Difference between revisions 111804236 and 111804241 on dewikiA '''parametric oscillator''' is a simple harmonic oscillator whose parameters (its resonant frequency <math>\omega</math> and damping <math>\beta</math>) are variable :<math> \frac{d^{2}x}{dt^{2}} + \beta(t) \frac{dx}{dt} + \omega^{2}(t) x = 0 </math> (contracted; show full)In general, the variations in damping and frequency are relatively small perturbations :<math> \beta(t) = \omega_{0} \left[b + g(t) \right] </math> :<math> \omega^{2}(t) = \omega_{0}^{2} \left[ 1 + h(t) \right] </math> where <math>\omega_{0}</math> and <math>b\omega_{0}</math> are constants, namely, the time-averaged oscillator frequency and damping, respectively. The transformed frequency can be written in a similar way :<math> \Omega^{2}(t) = \omega_{n}^{2} \left[ 1 + f(t) \right] </math> where <math>\omega_{n}</math> is the [[natural frequency]] of the damped harmonic oscillator :<math> \omega_{n}^{2} \equiv \omega_{0}^{2} \left( 1 - \frac{b^{2}}{4} \right) </math> and :<math> \omega_{n}^{2} f(t) \equiv \omega_{0}^{2} h(t) - \frac{1}{2\omega_{0}} \left( \frac{dg}{dt} \right) - \frac{b}{2} g(t) - \frac{1}{4} g^{2}(t) </math> Thus, our transformed equation can be written :<math> \frac{d^{2}q}{dt^{2}} + \omega_{n}^{2} \left[ 1 + f(t) \right] q = 0 </math> Remarkably, the independent variations <math>g(t)</math> and <math>h(t)</math> in the oscillator damping and resonant frequency, respectively, can be combined into a single pumping function <math>f(t)</math>. The converse conclusion is that any form of parametric excitation can be accomplished by varying either (contracted; show full) :<math> \frac{dr}{dt} = \left( \alpha_{\mathrm{max}} \cos 2\theta \right) r </math> :<math> \frac{d\theta}{dt} = -\alpha_{\mathrm{max}} \left[ \sin 2\theta - \sin 2\theta_{\mathrm{eq}} \right] </math> where we have defined for brevity :<math> \alpha_{\mathrm{max}} \equiv \frac{f_{0} \omega_{n}^{2}}{4\omega_{p}} </math> :<math> \sin 2\theta_{\mathrm{eq}} \equiv \left( \frac{2}{f_{0}} \right) \epsilon </math> and the detuning :<math> \epsilon \equiv \frac{\omega_{p}^{2} - \omega_{n}^{2}}{\omega_{n}^{2}} </math> The <math>\theta</math> equation does not depend on <math>r</math>, and linearization near its equilibrium position <math>\theta_{\mathrm{eq}}</math> shows that <math>\theta</math> decays exponentially to its equilibrium :<math> \theta(t) = \theta_{\mathrm{eq}} + \left( \theta_{0} - \theta_{\mathrm{eq}} \right) e^{-2\alpha t} </math> where the decay constant <math>\alpha \equiv \alpha_{\mathrm{max}} \cos 2\theta_{\mathrm{eq}}</math>. (contracted; show full)which represents a simple harmonic oscillator (or, alternatively, a bandpass filter) being driven by a signal <math>-\omega_{n}^{2} f(t) q</math> that is proportional to its response <math>q</math>. Assume that <math>q(t) = A \cos \omega_{p} t</math> already has a n oscillation at frequency <math>\omega_{p}</math> and that the pumping <math>f(t) = f_{0} \sin 2\omega_{p}t</math> has double the frequency and a small amplitude <math>f_{0} \ll 1</math>. Their product <math>q(t)f(t)</math> produces two driving signals, one at frequency <math>\omega_{p}</math> and the other at frequency <math>3 \omega_{p}</math> :<math> (contracted; show full)external driving force is at the mean resonant frequency <math>\omega_{0}</math>, i.e., <math>E(t) = E_{0} \sin \omega_{0} t</math>. The equation then becomes :<math> \frac{d^{2}x}{dt^{2}} + b \omega_{0} \frac{dx}{dt} + \omega_{0}^{2} \left[ 1 + h_{0} \sin 2\omega_{0} t \right] x = E_{0} \sin \omega_{0} t </math> whose solution is roughly :<math> x(t) = \frac{2E_{0}}{\omega_{0}^{2} \left( 2b - h_{0} \right)} \cos \omega_{0} t (contracted; show full) * [[Optical parametric oscillator]] * [[Optical parametric amplifier]] [[Category:Oscillators]] [[Category:Amplifiers]] [[Category:Dynamical systems]] [[Category:Ordinary differential equations]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://de.wikipedia.org/w/index.php?diff=prev&oldid=111804241.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|