Difference between revisions 115528841 and 115528842 on dewiki

'''Domain theory''' is a   branch of [[mathematics]] that studies special kinds of [[partially ordered set]]s (posets) commonly called '''domains'''. Consequently, domain theory can be considered as a branch of [[order theory]]. The field has major applications in [[computer science]], where it is used to specify [[denotational semantics]], especially for [[functional programming|functional programming languages]]. Domain theory formalizes the intu(contracted; show full)==See also==
*[[Scott domain]]
*[[Scott information system]]
*[[Type theory]]
*[[Category theory]]

== Further reading ==
*{{cite encyclopedia | author = G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott | encyclopedia = Encyclopedia of Mathematics and its Applications | title = Continuous Lattices and Domains | year = 2003 | publisher = Cambridge University Press | volume = 93 | i
d = ISBNsbn = 0-521-80338-1 }}
*{{cite conference | author = [[Samson Abramsky|S. Abramsky]], A. Jung | year = 1994 | title = Domain theory | booktitle = Handbook of Logic in Computer Science | editor = S. Abramsky, D. M. Gabbay, T. S. E. Maibaum, editors, | volume = III | publisher = Oxford University Press | id = ISBN 0-19-853762-X | url = http://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf | format = PDF | accessdate = 2007-10-13 }}
(contracted; show full)[[Category:Domain theory]]
[[Category:Fixed points]]

[[fa:نظریه دامنه]]
[[fr:Théorie des domaines]]
[[ko:도메인 이론]]
[[ja:領域理論]]
[[zh:域理论]]