Difference between revisions 101171372 and 101171579 on enwiki:''For more background on this topic, see [[derivative]].'' ===Example 1=== Consider ''f''(''x'') = 5: : <math>f'(x)=\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\rightarrow 0} \frac{f(x+h)-5}{h} = \lim_{h\rightarrow 0} \frac{(5-5)}{h} = \lim_{h\rightarrow 0} \frac{0}{h} = \lim_{h\rightarrow 0} 0 = 0</math> The derivative of a [[constant function]] is [[0 (number)|zero]]. (contracted; show full) &= \lim_{h\to 0} \frac{\frac{1}{2 \sqrt{x+h}}-\frac{1}{2 \sqrt{x}}}{h} \\ &= \lim_{h\to 0} \frac{\left(\frac{1}{2 \sqrt{x+h}}-\frac{1}{2 \sqrt{x}}\right)(2 \sqrt{x+h}+2 \sqrt{x})}{h(2 \sqrt{x+h}+2 \sqrt{x})} \\ &= \lim_{h\rightarrow 0} \frac{\frac{2 \sqrt{x}}{2 \sqrt{x+h}}-\frac{2 \sqrt{x+h}}{2 \sqrt{x}}}{h(2 \sqrt{x+h}+2 \sqrt{x})} \\ &= -\frac{1}{4 x \sqrt{x}} \end{align} </math> ===Monomial Proof=== {| |- | | Given <math> f(x) = x^n\, </math> |- | | <math> f'(x)\, </math> | <math>= \lim_{h\to 0}\frac{(x+h)^n - x^n}{h} </math> |- | | <math> = \lim_{h\to 0}\frac{\sigma^n_i=0 - x^n}{h} </math> |- | | <math> = \lim_{h\to 0}\frac{x^2 + 2xh + h^2 - x^2}{h} </math> |- | | <math> = \lim_{h\to 0}\frac{2xh + h^2}{h} </math> |- | | <math> = \lim_{h\to 0}(2x + h) = 2x. </math> |}⏎ ⏎ [[Category:calculus]] [[Category:Mathematical notation]] [[eo:Derivaĵo (ekzemploj)]] [[fr:Exemples de calcul de dérivée]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://en.wikipedia.org/w/index.php?diff=prev&oldid=101171579.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|