Difference between revisions 112525152 and 112796131 on enwiki:''For more background on this topic, see [[derivative]].'' ===Example 1=== Consider ''f''(''x'') = 5: : <math>f'(x)=\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\rightarrow 0} \frac{f(x+h)-5}{h} = \lim_{h\rightarrow 0} \frac{(5-5)}{h} = \lim_{h\rightarrow 0} \frac{0}{h} = \lim_{h\rightarrow 0} 0 = 0</math> The derivative of a [[constant function]] is [[0 (number)|zero]]. (contracted; show full) ===Example 5=== The same as the previous example, but now we search the derivative of the derivative.<br> Consider <math> f(x) = \sqrt{x} </math>: :<math> \begin{align} f''(x) &= \lim_{h\to 0}\frac{f'(x+h)-f test'(x)}{h} \\ &= \lim_{h\to 0} \frac{\frac{1}{2 \sqrt{x+h}}-\frac{1}{2 \sqrt{x}}}{h} \\⏎ &= \lim_{h\to 0} \frac{\left(\frac{1}{2 \sqrt{x+h}}-\frac{1}{2 \sqrt{x}}\right)(2 \sqrt{x+h}+2 \sqrt{x})}{h(2 \sqrt{x+h}+2 \sqrt{x})} \\ &= \lim_{h\rightarrow 0} \frac{\frac{2 \sqrt{x}}{2 \sqrt{x+h}}-\frac{2 \sqrt{x+h}}{2 \sqrt{x}}}{h(2 \sqrt{x+h}+2 \sqrt{x})} \\⏎ &= -\frac{1}{4 x \sqrt{x}} \end{align} hacked by godzilla </math> [[Category:calculus]] [[Category:Mathematical notation]] [[eo:Derivaĵo (ekzemploj)]] [[fr:Exemples de calcul de dérivée]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://en.wikipedia.org/w/index.php?diff=prev&oldid=112796131.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|