Difference between revisions 121643335 and 196291012 on enwiki:''For more background on this topic, see [[derivative]].'' ===Example 1=== Consider ''f''(''x'') = 5: : <math>f'(x)=\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\rightarrow 0} \frac{f(x+h)-5}{h} = \lim_{h\rightarrow 0} \frac{(5-5)}{h} = \lim_{h\rightarrow 0} \frac{0}{h} = \lim_{h\rightarrow 0} 0 = 0</math> The derivative of a [[constant function]] is [[0 (number)|zero]]. ===Example 2=== Consider the graph of <math>f(x)=2x-3</math>. If the reader has an understanding of [[algebra]] and the [[Cartesian coordinate system]], the reader should be able to independently determine that this [[line (mathematics)|line]] has a slope of 2 at every point. Using the above quotient (along with an understanding of the [[limit (mathematics)|limit]], [[secant]], and [[tangent (trigonometric function)|tangent]]) one can determine the slope at (4,5): :<math> \begin{align} f'(4) &= \lim_{h\to 0}\frac{f(4+h)-f(4)}{h} \\ &= \lim_{h\to 0}\frac{2(4+h)-3-(2\cdot 4-3)}{h} \\ &= \lim_{h\to 0}\frac{8+2h-3-8+3}{h} \\ &= \lim_{h\to 0}\frac{2h}{h} \\ (contracted; show full)\end{align} </math> [[Category:differential calculus]] [[Category:Mathematical notation]] [[eo:Derivaĵo (ekzemploj)]] [[fr:Exemples de calcul de dérivée]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://en.wikipedia.org/w/index.php?diff=prev&oldid=196291012.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|