Difference between revisions 20306686 and 20307058 on enwiki===Example 1=== Consider ''f''(''x'') = 5: : <math>f'(x)=\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\rightarrow 0} \frac{5-5}{h} = 0</math> The derivative of a [[constant]] is [[0 (number)|zero]]. ===Example 2=== (contracted; show full)|<math> = \frac{1}{2 \sqrt{x}} </math> |} ===Example 5=== The same as the previous example, but now we search the derivative of the derivative.<br> Consider ''f''(''x'') = √''x'': : {| |- |<math> f''(x) \,</math> |<math>= \lim_{h\rightarrow 0}\frac{f'(x+h)-f'(x)}{h} </math> ::|- | |<math> = \lim_{h\rightarrow 0} \frac{\frac{1}{2 \sqrt{x+h}}-\frac{1}{2 \sqrt{x}}}{h}</math> ::|- | |<math> = \lim_{h\rightarrow 0} \frac{\left(\frac{1}{2 \sqrt{x+h}}-\frac{1}{2 \sqrt{x}}\right)(2 \sqrt{x+h}+2 \sqrt{x})}{h(2 \sqrt{x+h}+2 \sqrt{x})}</math> ::|- | |<math> = \lim_{h\rightarrow 0} \frac{\frac{2 \sqrt{x}}{2 \sqrt{x+h}}-\frac{2 \sqrt{x+h}}{2 \sqrt{x}}}{h(2 \sqrt{x+h}+2 \sqrt{x})}</math> ::|- | |<math> = \lim_{h\rightarrow 0} \frac{\frac{x}{\sqrt{x} \sqrt{x+h}}-\frac{x+h}{\sqrt{x} \sqrt{x+h}}}{h(2 \sqrt{x+h}+2 \sqrt{x})}</math> ::|- | |<math> = \lim_{h\rightarrow 0} \frac{\frac{-h}{\sqrt{x} \sqrt{x+h}}}{h(2 \sqrt{x+h}+2 \sqrt{x})}</math> ::|- | |<math> = \lim_{h\rightarrow 0} \frac{-1}{\sqrt{x} \sqrt{x+h} (2 \sqrt{x+h}+2 \sqrt{x})}</math> ::|- | |<math> = \lim_{h\rightarrow 0} \frac{-1}{2 \sqrt{x} (x+h) + 2 x \sqrt{x+h}}</math> ::|- | |<math> = \frac{-1}{4 x \sqrt{x}}</math> ::|- | |<math> = \frac{1}{4 x \sqrt{x}}</math> ⏎ |}⏎ ⏎ (<math>\sqrt{x}</math> has 2 answers that only differ in sign, so it doesn't matter which sign we put in front of the end result.) [[Category:calculus]] [[Category:Mathematical notation]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://en.wikipedia.org/w/index.php?diff=prev&oldid=20307058.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|