Difference between revisions 219256380 and 219645022 on enwikiIn [[number theory]], a '''Wolstenholme prime''' is a certain kind of [[prime number]]. A prime ''p'' is called a Wolstenholme prime [[iff]] the following condition holds: :<math>{{2p-1}\choose{p-1}} \equiv 1 \pmod{p^4}.</math> (contracted; show full)== See also == * [[Wieferich prime]] * [[Wilson prime]] * [[Wall-Sun-Sun prime]] * [[List of special classes of prime numbers]] == References == {{cite journal |author=J. Wolstenholme, " |title=On certain properties of prime numbers", |journal=Quarterly Journal of Mathematics '''5''' (1862), pp. |volume=5 |year=1862 |pages=35–39.}} == External links == * [http://primes.utm.edu/glossary/page.php?sort=Wolstenholme The Prime Glossary: Wolstenholme prime] * [http://www.loria.fr/~zimmerma/records/Wieferich.status Status of the search for Wolstenholme primes] [[Category:Classes of prime numbers]] [[Category:Factorial and binomial topics]] [[de:Wolstenholme-Primzahl]] [[eo:Primo de Wolstenholme]] [[es:Número de Wolstenholme]] [[fr:Nombre de Wolstenholme]] [[it:Numero primo di Wolstenholme]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://en.wikipedia.org/w/index.php?diff=prev&oldid=219645022.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|