Difference between revisions 219256380 and 219645022 on enwiki

In [[number theory]], a '''Wolstenholme prime''' is a certain kind of [[prime number]]. A prime ''p'' is called a Wolstenholme prime [[iff]] the following condition holds:

:<math>{{2p-1}\choose{p-1}} \equiv 1 \pmod{p^4}.</math>

(contracted; show full)== See also ==
* [[Wieferich prime]]
* [[Wilson prime]]
* [[Wall-Sun-Sun prime]]
* [[List of special classes of prime numbers]]

== References ==

{{cite journal |author=J. Wolstenholme, " |title=On certain properties of prime numbers",  |journal=Quarterly Journal of Mathematics '''5''' (1862), pp. |volume=5 |year=1862 |pages=35–39.}}

== External links ==
* [http://primes.utm.edu/glossary/page.php?sort=Wolstenholme The Prime Glossary: Wolstenholme prime]
* [http://www.loria.fr/~zimmerma/records/Wieferich.status Status of the search for Wolstenholme primes]

[[Category:Classes of prime numbers]]
[[Category:Factorial and binomial topics]]

[[de:Wolstenholme-Primzahl]]
[[eo:Primo de Wolstenholme]]
[[es:Número de Wolstenholme]]
[[fr:Nombre de Wolstenholme]]
[[it:Numero primo di Wolstenholme]]