Difference between revisions 259789532 and 259790109 on enwikiThe '''shifting ''n''th root algorithm''' is an [[algorithm]] for extracting the [[nth root|''n''th root]] of a positive [[real number]] which proceeds iteratively by shifting in ''n'' [[numerical digit|digits]] of the radicand, starting with the most significant, and produces one digit of the root on each iteration, in a manner similar to [[long division]]. ==Algorithm== ===Notation=== (contracted; show full) 1. 4 4 2 2 4 ---------------------- 3/ 3.000 000 000 000 000 /\/ 1 = 300×(0^2)×1+30×0×(1^2)+1^3 - 2 000 1 744 = 300×(1 ^2)×4+30×1×(4^2)+4^3<sup>2</sup>)×4+30×1×(4<sup>2</sup>)+4<sup>3</sup> ----- 256 000 241 984 = 300×(14^2)×4+30×14×(4^2)+4^3<sup>2</sup>)×4+30×14×(4<sup>2</sup>)+4<sup>3</sup> ------- 14 016 000 12 458 888 = 300×(144^2<sup>2</sup>)×2+30×144×(2^2)+2^3<sup>2</sup>)+2<sup>3</sup> ---------- 1 557 112 000 1 247 791 448 = 300×(1442^2<sup>2</sup>)×2+30×1442×(2^2)+2^3<sup>2</sup>)+2<sup>3</sup> ------------- 309 320 552 000 249 599 823 424 = 300×(14422^2<sup>2</sup>)×4+30×14422×(4^2)+4^3<sup>2</sup>)+4<sup>3</sup> --------------- 59 720 728 576 Note that after the first iteration or two the leading term dominates the <math>(B y + \beta)^n - B^n y^n</math>, so we can get an often correct first guess at β by dividing <math>B r + \alpha</math> by <math>n B^{n-1} y^{n-1}</math>. ===Performance=== (contracted; show full) ---------------------- 40×16265×(7^3)+7^4 1 1295 2830 2447 6799 [[Category:Root-finding algorithms]] [[de:Schriftliches Wurzelziehen]] [[fr:Algorithme de décalage n-racines]] [[nl:Worteltrekken]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://en.wikipedia.org/w/index.php?diff=prev&oldid=259790109.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|