Difference between revisions 54065347 and 54065513 on enwiki

(************** Content-type: application/mathematica **************
                     CreatedBy='Mathematica 5.2'

                    Mathematica-Compatible Notebook

This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.

To get the notebook into a Mathematica-compatible application, do
one of the following:

* Save the data starting with the line of stars above into a file
  with a name ending in .nb, then open the file inside the
  application;

* Copy the data starting with the line of stars above to the
  clipboard, then use the Paste menu command inside the application.

Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.  Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).

NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.

For more information on notebooks and Mathematica-compatible 
applications, contact Wolfram Research:
  web: http://www.wolfram.com
  email: [email protected]
  phone: +1-217-398-0700 (U.S.)

Notebook reader applications are available free of charge from 
Wolfram Research.
*******************************************************************)

(*CacheID: 232*)


(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[     25256,        467]*)
(*NotebookOutlinePosition[     25885,        489]*)
(*  CellTagsIndexPosition[     25841,        485]*)
(*WindowFrame->Normal*)



Notebook[{
Cell[BoxData[
    \(\(\(phixp15y = \((phixy + phixp1y)\)/2; \ \ hxp15y = \((hxy + hxp1y)\)/
        2; Qxpy = H3[hxp15y]*a[phixp15y]; \ Rxpy = H3[hxp15y]*c[phixp15y];\ \n
    
    phixm15y = \((phixy + phixm1y)\)/2; \ \ hxm15y = \((hxy + hxm1y)\)/2; 
    Qxmy = H3[hxm15y]*a[phixm15y]; \ Rxmy = H3[hxm15y]*c[phixm15y];\n
    phixyp15 = \((phixy + phixyp1)\)/2; \ \ \ hxyp15 = \((hxy + hxyp1)\)/2; \ 
    Qxyp = H3[hxyp15]*a[phixyp15]; \ \ Rxyp = H3[hxyp15]*c[phixyp15];\n
    phixym15 = \((phixy + phixym1)\)/2; \ \ \ hxym15 = \((hxy + hxym1)\)/2; \ 
    Qxym = H3[hxym15]*a[phixym15]; \ \ Rxym = 
      H3[hxym15]*c[phixym15];\[IndentingNewLine]
    psixp15y = \((phixy*hxy + phixp1y*hxp1y)\)/2; 
    psixm15y = \((phixy*hxy + phixm1y*hxm1y)\)/2;\[IndentingNewLine]
    \(rhoxy = rho[phixy];\)\ \[IndentingNewLine]
    rhoxp1y = rho[phixp1y]; rhoxm1y = rho[phixm1y];\ \[IndentingNewLine]
    \(\(rhoxyp1 = rho[phixyp1]; \ \ rhoxym1 = 
      rho[phixym1];\)\(\[IndentingNewLine]\)
    \)\)\(\ \)\)\)], "Input"],

Cell[BoxData[{
    \(\(\(FfunNoDpart[hxm2y_, hxm1ym1_, hxm1y_, hxm1yp1_, hxym2_, hxym1_, 
          hxy_, hxyp1_, hxyp2_, hxp1ym1_, hxp1y_, hxp1yp1_, hxp2y_, phixm1y_, 
          phixym1_, phixy_, phixyp1_, 
          phixp1y_] = \((\((\(-\((\((\((\(-3\)*hxy - hxym2 + 3*hxym1 + 
                                    hxyp1)\)/
                                Power[beta, 
                                  3] + \((\(-2\)*hxy + hxm1y + 
                                    hxp1y)\)/\((Power[alpha, 2]*
                                    beta)\) - \((\(-2\)*hxym1 + hxm1ym1 + 
                                    hxp1ym1)\)/\((Power[alpha, 2]*beta)\))\)*
                          Qxym)\)\) + \((\((3*hxy - hxym1 - 3*hxyp1 + 
                                hxyp2)\)/
                            Power[beta, 
                              3] - \((\(-2\)*hxy + hxm1y + 
                                hxp1y)\)/\((Power[alpha, 2]*
                                beta)\) + \((\(-2\)*hxyp1 + hxm1yp1 + 
                                hxp1yp1)\)/\((Power[alpha, 2]*beta)\))\)*
                      Qxyp)\)/
                beta + \((\(-\((\((\((\(-2\)*hxy + hxym1 + hxyp1)\)/\((alpha*
                                    Power[beta, 2])\) - \((\(-2\)*hxm1y + 
                                    hxm1ym1 + hxm1yp1)\)/\((alpha*
                                    Power[beta, 2])\) + \((\(-3\)*hxy - 
                                    hxm2y + 3*hxm1y + hxp1y)\)/
                                Power[alpha, 3])\)*
                          Qxmy)\)\) + \((\(-\((\((\(-2\)*hxy + hxym1 + 
                                    hxyp1)\)/\((alpha*
                                    Power[beta, 2])\))\)\) + \((\(-2\)*
                                  hxp1y + hxp1ym1 + hxp1yp1)\)/\((alpha*
                                Power[beta, 2])\) + \((3*hxy - hxm1y - 
                                3*hxp1y + hxp2y)\)/Power[alpha, 3])\)*Qxpy)\)/
                alpha)\) + 
          gridsize^3*\((b[phixp15y]*H3[hxp15y] + 
                  C1*psixp15y*f[phixp15y]*w[hxp15y] - 
                  b[phixm15y]*H3[hxm15y] - 
                  C1*psixm15y*f[phixm15y]*w[hxm15y])\)/
              alpha;\)\(\[IndentingNewLine]\)
    \)\), "\[IndentingNewLine]", 
    \(\(FfunDpart[hxm2y_, hxm1ym1_, hxm1y_, hxm1yp1_, hxym2_, hxym1_, hxy_, 
          hxyp1_, hxyp2_, hxp1ym1_, hxp1y_, hxp1yp1_, hxp2y_, phixm1y_, 
          phixym1_, phixy_, phixyp1_, phixp1y_] = 
        gridsize^2*\((Qxpy*\((hxp1y*rhoxp1y - hxy*rhoxy)\) - 
                  Qxmy*\((hxy*rhoxy - hxm1y*rhoxm1y)\))\)/
              Power[alpha, 2] - \((5/8)\)*
            gridsize^2*\((H4[hxp15y]*a[phixp15y]*\((rhoxp1y - rhoxy)\) - 
                  H4[hxm15y]*a[phixm15y]*\((rhoxy - rhoxm1y)\))\)/
              Power[alpha, 2] + 
          gridsize^2*\((Qxyp*\((hxyp1*rhoxyp1 - hxy*rhoxy)\) - 
                  Qxym*\((hxy*rhoxy - hxym1*rhoxym1)\))\)/
              Power[beta, 2] - \((5/8)\)*
            gridsize^2*\((H4[hxyp15]*a[phixyp15]*\((rhoxyp1 - rhoxy)\) - 
                  H4[hxym15]*a[phixym15]*\((rhoxy - rhoxym1)\))\)/
              Power[beta, 2];\)\), "\n", 
    \(\)}], "Input"],

Cell[BoxData[
    \(\(GfunNoDpart[hxm2y_, hxm1ym1_, hxm1y_, hxm1yp1_, hxym2_, hxym1_, hxy_, 
          hxyp1_, hxyp2_, hxp1ym1_, hxp1y_, hxp1yp1_, hxp2y_, phixm1y_, 
          phixym1_, phixy_, phixyp1_, 
          phixp1y_] = \((\((\(-\((\((\((\(-3\)*hxy - hxym2 + 3*hxym1 + 
                                    hxyp1)\)/
                                Power[beta, 
                                  3] + \((\(-2\)*hxy + hxm1y + 
                                    hxp1y)\)/\((Power[alpha, 2]*
                                    beta)\) - \((\(-2\)*hxym1 + hxm1ym1 + 
                                    hxp1ym1)\)/\((Power[alpha, 2]*beta)\))\)*
                          Rxym)\)\) + \((\((3*hxy - hxym1 - 3*hxyp1 + 
                                hxyp2)\)/
                            Power[beta, 
                              3] - \((\(-2\)*hxy + hxm1y + 
                                hxp1y)\)/\((Power[alpha, 2]*
                                beta)\) + \((\(-2\)*hxyp1 + hxm1yp1 + 
                                hxp1yp1)\)/\((Power[alpha, 2]*beta)\))\)*
                      Rxyp)\)/
                beta + \((\(-\((\((\((\(-2\)*hxy + hxym1 + hxyp1)\)/\((alpha*
                                    Power[beta, 2])\) - \((\(-2\)*hxm1y + 
                                    hxm1ym1 + hxm1yp1)\)/\((alpha*
                                    Power[beta, 2])\) + \((\(-3\)*hxy - 
                                    hxm2y + 3*hxm1y + hxp1y)\)/
                                Power[alpha, 3])\)*
                          Rxmy)\)\) + \((\(-\((\((\(-2\)*hxy + hxym1 + 
                                    hxyp1)\)/\((alpha*
                                    Power[beta, 2])\))\)\) + \((\(-2\)*
                                  hxp1y + hxp1ym1 + hxp1yp1)\)/\((alpha*
                                Power[beta, 2])\) + \((3*hxy - hxm1y - 
                                3*hxp1y + hxp2y)\)/Power[alpha, 3])\)*Rxpy)\)/
                alpha)\) + 
          gridsize^3*\((d[phixp15y]*H3[hxp15y] + 
                  C2*psixp15y*f[phixp15y]*w[hxp15y] - 
                  d[phixm15y]*H3[hxm15y] - 
                  C2*psixm15y*f[phixm15y]*w[hxm15y])\)/alpha;\)\)], "Input"],

Cell[BoxData[
    \(\(\(GfunDpart[hxm2y_, hxm1ym1_, hxm1y_, hxm1yp1_, hxym2_, hxym1_, hxy_, 
          hxyp1_, hxyp2_, hxp1ym1_, hxp1y_, hxp1yp1_, hxp2y_, phixm1y_, 
          phixym1_, phixy_, phixyp1_, phixp1y_] = 
        gridsize^2*\((Rxpy*\((hxp1y*rhoxp1y - hxy*rhoxy)\) - 
                  Rxmy*\((hxy*rhoxy - hxm1y*rhoxm1y)\))\)/
              Power[alpha, 2] - \((5/8)\)*
            gridsize^2*\((H4[hxp15y]*c[phixp15y]*\((rhoxp1y - rhoxy)\) - 
                  H4[hxm15y]*c[phixm15y]*\((rhoxy - rhoxm1y)\))\)/
              Power[alpha, 2] + 
          gridsize^2*\((Rxyp*\((hxyp1*rhoxyp1 - hxy*rhoxy)\) - 
                  Rxym*\((hxy*rhoxy - hxym1*rhoxym1)\))\)/
              Power[beta, 2] - \((5/8)\)*
            gridsize^2*\((H4[hxyp15]*c[phixyp15]*\((rhoxyp1 - rhoxy)\) - 
                  H4[hxym15]*c[phixym15]*\((rhoxy - rhoxym1)\))\)/
              Power[beta, 2];\)\(\n\)
    \)\)], "Input"],

Cell[BoxData[
    \(\(Ffun[hxm2y_, hxm1ym1_, hxm1y_, hxm1yp1_, hxym2_, hxym1_, hxy_, 
          hxyp1_, hxyp2_, hxp1ym1_, hxp1y_, hxp1yp1_, hxp2y_, phixm1y_, 
          phixym1_, phixy_, phixyp1_, phixp1y_] = 
        hxy + cfl*
            FfunNoDpart[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, 
              hxyp1, hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, 
              phixy, phixyp1, phixp1y] - 
          cfl*Dinclination*
            FfunDpart[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, 
              hxyp1, hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, 
              phixy, phixyp1, phixp1y];\)\)], "Input"],

Cell[BoxData[{
    \(\(GfunUntweaked[hxm2y_, hxm1ym1_, hxm1y_, hxm1yp1_, hxym2_, hxym1_, 
          hxy_, hxyp1_, hxyp2_, hxp1ym1_, hxp1y_, hxp1yp1_, hxp2y_, phixm1y_, 
          phixym1_, phixy_, phixyp1_, phixp1y_] = 
        phixy*hxy + 
          cfl*GfunNoDpart[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, 
              hxyp1, hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, 
              phixy, phixyp1, phixp1y] - 
          cfl*Dinclination*
            GfunDpart[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, 
              hxyp1, hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, 
              phixy, phixyp1, phixp1y];\)\), "\[IndentingNewLine]", 
    \(\(Gfun[hxm2y_, hxm1ym1_, hxm1y_, hxm1yp1_, hxym2_, hxym1_, hxy_, 
          hxyp1_, hxyp2_, hxp1ym1_, hxp1y_, hxp1yp1_, hxp2y_, phixm1y_, 
          phixym1_, phixy_, phixyp1_, phixp1y_] = 
        Simplify[
          phixy + \((GfunUntweaked[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, 
                    hxym1, hxy, hxyp1, hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, 
                    phixm1y, phixym1, phixy, phixyp1, phixp1y] - 
                  phixy*Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, 
                      hxy, hxyp1, hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, 
                      phixm1y, phixym1, phixy, phixyp1, phixp1y])\)/
              hxy];\)\)}], "Input"],

Cell[BoxData[
    \(\(\( (*\(\(**\)\(\(*\)\(\ \)\(This\)\(\ \)\(is\)\(\ \)\(Gfun\)\(\ \
\)\(simplified\)\)\), \ using\ the\ fact\ that\ c[phi] = phi*a[phi], \ 
      d[phi] = phi*b[phi]\ *****) \)\(\[IndentingNewLine]\)\(GfunS[hxm2y_, 
          hxm1ym1_, hxm1y_, hxm1yp1_, hxym2_, hxym1_, hxy_, hxyp1_, hxyp2_, 
          hxp1ym1_, hxp1y_, hxp1yp1_, hxp2y_, phixm1y_, phixym1_, phixy_, 
          phixyp1_, phixp1y_] = 
        phixy + cfl*\((\((an[phixy]*
                        H3[hxy]*\((\((hxp2y - 2*hxp1y + 2*hxm1y - 
                                  hxm2y)\)/\((2*alpha^3)\) + \((hxp1yp1 - 
                                  2*hxp1y + hxp1ym1 - hxm1yp1 + 2*hxm1y - 
                                  hxm1ym1)\)/\((2*alpha*
                                  beta^2)\))\)*\((phixp1y - phixm1y)\)/\((2*
                              alpha)\) + 
                      an[phixy]*
                        H3[hxy]*\((\((hxyp2 - 2*hxyp1 + 2*hxym1 - 
                                  hxym2)\)/\((2*beta^3)\) + \((hxp1yp1 - 
                                  2*hxyp1 + hxm1yp1 - hxp1ym1 + 2*hxym1 - 
                                  hxm1ym1)\)/\((2*alpha^2*
                                  beta)\))\)*\((phixyp1 - phixym1)\)/\((2*
                              beta)\))\)/hxy + 
                gridsize^3*H3[hxy]*
                  bn[phixy]*\(\((phixp1y - phixm1y)\)/\((2*alpha)\)\)/hxy + 
                gridsize^3*\((C2 - 
                      C1*phixy)\)*\(\((w[hxp1y]*f[phixp1y]*phixp1y*hxp1y - 
                          w[hxm1y]*f[phixm1y]*phixm1y*hxm1y)\)/\((2*
                          alpha)\)\)/hxy - 
                Dinclination*gridsize^2*
                  an[phixy]*\((H3[
                            hxy]*\((phixp1y - 
                              phixm1y)\)*\((rho[phixp1y]*hxp1y - 
                                rho[phixm1y]*hxm1y)\)/\((4*alpha^2)\) - \((5/
                              8)\)*H4[
                            hxy]*\((phixp1y - 
                              phixm1y)\)*\((rho[phixp1y] - 
                                rho[phixm1y])\)/\((4*alpha^2)\) + 
                        H3[hxy]*\((phixyp1 - 
                              phixym1)\)*\((rho[phixyp1]*hxyp1 - 
                                rho[phixym1]*hxym1)\)/\((4*beta^2)\) - \((5/
                              8)\)*H4[
                            hxy]*\((phixyp1 - 
                              phixym1)\)*\((rho[phixyp1] - 
                                rho[phixym1])\)/\((4*beta^2)\))\)/
                    hxy)\);\)\)\)], "Input"],

Cell[BoxData[
    \(\(\(CForm[
      Simplify[{Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, 
            hxyp1, hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, 
            phixy, phixyp1, phixp1y], 1000, 
          Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
            hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
            phixyp1, phixp1y], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxm2y], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxm1ym1], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxm1y], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxm1yp1], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxym2], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxym1], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxy], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxyp1], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxyp2], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxp1ym1], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxp1y], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxp1yp1], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxp2y], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], phixm1y], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], phixym1], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], phixy], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], phixyp1], 1000, 
          D[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], phixp1y], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxm2y], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxm1ym1], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxm1y], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxm1yp1], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxym2], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxym1], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxy], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxyp1], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxyp2], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxp1ym1], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxp1y], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxp1yp1], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], hxp2y], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], phixm1y], 
          1000, \[IndentingNewLine]\[IndentingNewLine]D[
            Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], phixym1], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], phixy], 
          1000, \[IndentingNewLine]\[IndentingNewLine]D[
            Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], phixyp1], 1000, 
          D[Gfun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, hxyp1, 
              hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, phixy, 
              phixyp1, phixp1y], phixp1y], 1000}]]\)\(\n\)\(\n\)
    \)\)], "Input"],

Cell[BoxData[{
    \(L[x_, \ y_] = D[D[h[x, \ y], \ x], \ x] + D[D[h[x, \ y], \ y], \ y]; 
    Lx[x_, \ y_] = D[L[x, \ y], \ x]; 
    Ly[x_, \ y_] = D[L[x, \ y], \ y];\), "\[IndentingNewLine]", 
    \(\(FCont[x_, \ y_] = \[IndentingNewLine]h[x, \ y] + 
          cfl*\((D[a[phi[x, \ y]]*H3[h[x, \ y]]*Lx[x, \ y], \ x] + 
                D[a[phi[x, \ y]]*H3[h[x, \ y]]*Ly[x, \ y], \ y])\) + 
          cfl*gridsize^3*
            D[b[phi[x, \ y]]*H3[h[x, \ y]] + 
                C1*phi[x, \ y]*h[x, \ y]*f[phi[x, \ y]]*w[h[x, \ y]], \ x] - 
          cfl*Dinclination*
            gridsize^2*\((D[
                  a[phi[x, 
                        y]]*\((H3[h[x, y]]*
                          D[rho[phi[x, y]]*h[x, y], x] - \((5/8)\)*
                          H4[h[x, y]]*D[rho[phi[x, y]], x])\), x] + 
                D[a[phi[x, 
                        y]]*\((H3[h[x, y]]*
                          D[rho[phi[x, y]]*h[x, y], y] - \((5/8)\)*
                          H4[h[x, y]]*D[rho[phi[x, y]], y])\), 
                  y])\);\)\), "\[IndentingNewLine]", 
    \(\(GCont[x_, \ y_] = \[IndentingNewLine]h[x, \ y]*phi[x, \ y] + 
          cfl*\((D[c[phi[x, \ y]]*H3[h[x, \ y]]*Lx[x, \ y], \ x] + 
                D[c[phi[x, \ y]]*H3[h[x, \ y]]*Ly[x, \ y], \ y])\) + 
          cfl*gridsize^3*
            D[d[phi[x, \ y]]*H3[h[x, \ y]] + 
                C2*phi[x, \ y]*h[x, \ y]*f[phi[x, \ y]]*w[h[x, \ y]], \ x] - 
          cfl*Dinclination*
            gridsize^2*\((D[
                  c[phi[x, 
                        y]]*\((H3[h[x, y]]*
                          D[rho[phi[x, y]]*h[x, y], x] - \((5/8)\)*
                          H4[h[x, y]]*D[rho[phi[x, y]], x])\), x] + 
                D[c[phi[x, 
                        y]]*\((H3[h[x, y]]*
                          D[rho[phi[x, y]]*h[x, y], y] - \((5/8)\)*
                          H4[h[x, y]]*D[rho[phi[x, y]], y])\), 
                  y])\);\)\), "\[IndentingNewLine]", 
    \(\)}], "Input"],

Cell[BoxData[{
    \(\(hxy = h[x, y];\)\), "\n", 
    \(\(hxp1y = h[x + alpha, y];\)\), "\n", 
    \(\(hxp2y = h[x + 2*alpha, y];\)\), "\n", 
    \(\(hxm1y = h[x - alpha, y];\)\), "\n", 
    \(\(hxm2y = h[x - 2*alpha, y];\)\), "\n", 
    \(\(hxyp1 = h[x, y + beta];\)\), "\n", 
    \(\(hxyp2 = h[x, y + 2*beta];\)\), "\n", 
    \(\(hxym1 = h[x, y - beta];\)\), "\n", 
    \(\(hxym2 = h[x, y - 2*beta];\)\), "\n", 
    \(\(hxp1yp1 = h[x + alpha, y + beta];\)\), "\n", 
    \(\(hxp1ym1 = h[x + alpha, y - beta];\)\), "\n", 
    \(\(hxm1yp1 = h[x - alpha, y + beta];\)\), "\n", 
    \(\(hxm1ym1 = h[x - alpha, y - beta];\)\), "\n", 
    \(\(phixy = phi[x, y];\)\), "\n", 
    \(\(phixp1y = phi[x + alpha, y];\)\), "\n", 
    \(\(phixm1y = phi[x - alpha, y];\)\), "\n", 
    \(\(phixyp1 = phi[x, y + beta];\)\), "\n", 
    \(\(phixym1 = phi[x, y - beta];\)\), "\[IndentingNewLine]", 
    \(\)}], "Input"],

Cell[BoxData[
    \(FSeries[x_, y_] = 
      Simplify[\[IndentingNewLine]\[IndentingNewLine]Normal[
          Series[Ffun[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, hxy, 
              hxyp1, hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, phixym1, 
              phixy, phixyp1, phixp1y], {alpha, 0, 0}, {beta, 0, 
              0}]]]\)], "Input"],

Cell[BoxData[
    \(GSeries[x_, y_] = 
      Simplify[Normal[
          Series[GfunUntweaked[hxm2y, hxm1ym1, hxm1y, hxm1yp1, hxym2, hxym1, 
              hxy, hxyp1, hxyp2, hxp1ym1, hxp1y, hxp1yp1, hxp2y, phixm1y, 
              phixym1, phixy, phixyp1, phixp1y], {alpha, 0, 0}, {beta, 0, 
              0}]]]\)], "Input"],

Cell[BoxData[""], "Input"],

Cell[BoxData[
    \(Simplify[FCont[x, \ y] - FSeries[x, \ y]]\)], "Input"],

Cell[BoxData[
    \(Simplify[GCont[x, \ y] - GSeries[x, \ y]]\)], "Input"]
},
FrontEndVersion->"5.2 for X",
ScreenRectangle->{{0, 1280}, {0, 1024}},
WindowSize->{1139, 993},
WindowMargins->{{0, Automatic}, {Automatic, 0}}
]

(*******************************************************************
Cached data follows.  If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at
the top of  the file.  The cache data will then be recreated when
you save this file from within Mathematica.
*******************************************************************)

(*CellTagsOutline
CellTagsIndex->{}
*)

(*CellTagsIndex
CellTagsIndex->{}
*)

(*NotebookFileOutline
Notebook[{
Cell[1754, 51, 1010, 17, 155, "Input"],
Cell[2767, 70, 3156, 53, 315, "Input"],
Cell[5926, 125, 2186, 35, 203, "Input"],
Cell[8115, 162, 918, 16, 107, "Input"],
Cell[9036, 180, 661, 11, 107, "Input"],
Cell[9700, 193, 1378, 22, 219, "Input"],
Cell[11081, 217, 2546, 43, 251, "Input"],
Cell[13630, 262, 7887, 118, 1003, "Input"],
Cell[21520, 382, 1967, 38, 235, "Input"],
Cell[23490, 422, 900, 19, 315, "Input"],
Cell[24393, 443, 351, 6, 75, "Input"],
Cell[24747, 451, 322, 6, 75, "Input"],
Cell[25072, 459, 26, 0, 27, "Input"],
Cell[25101, 461, 74, 1, 27, "Input"],
Cell[25178, 464, 74, 1, 27, "Input"]
}
]
*)



(*******************************************************************
End of Mathematica Notebook file.
*******************************************************************)# Abel's integral -------- Abelian integral
# Mathematical abstraction -------- Abstraction (mathematics)
# Anosov map -------- Anosov automorphism
# Archimedean bodies -------- Archimedean solids
# Birth-and-death process -------- Birth-death process
# Characteristic mapping -------- Characteristic map
# Adjoint representation of a Lie group -------- Adjoint representation
# Asymptotic expression -------- Asymptotic expansion
# Cadlag function -------- Cadlag
# Cadlag functions -------- Cadlag
# Centered polygonal number -------- Centered number
# Characteristic mapping -------- Characteristic map
# Chinese theorem -------- Chinese remainder theorem
# Circuminscribed -------- Circumscribe
# Complete beta function -------- Beta function
# Congruence in geometry -------- Congruence (geometry)
# Connected surface -------- Connected space
# Convolution of functions -------- Convolution
# Conway game -------- Conway's Game of Life
# Curve of constant breadth -------- Curve of constant width
# Diffie-Hellman protocol -------- Diffie-Hellman problem
# Disconnected space -------- Disconnected set
# Dispersion equation -------- Dispersion relation
# Eisenstein unit -------- Einstein (unit)
# Enantiomorphous -------- Enantiomorphic
# Enumerable -------- Enumerate
# Erdos-Turán conjecture -------- Erdős-Turan conjecture
# Essential singular point -------- Essential singularity
# Euler's totient rule -------- Euler's totient theorem
# Euler-Maclaurin sum formula -------- Euler-Maclaurin formula
# Eulerian number -------- Euler number
# Evolution strategies -------- Evolution strategy