Difference between revisions 642864687 and 642865122 on enwiki

{{DISPLAYTITLE:Shifting ''n''th root algorithm}}
{{unreferenced|date=May 2010}}
The '''shifting ''n''th root algorithm''' is an [[algorithm]] for extracting the [[nth root|''n''th root]] of a positive [[real number]] which proceeds iteratively by shifting in ''n'' [[numerical digit|digits]] of the radicand, starting with the most significant, and produces one digit of the root on each iteration, in (contracted; show full)          8 556 171 000
          7 889 992 299 = 300×(1709^2)×9+30×1709×(9^2)+9^3
          -------------
            666 178 701 000
            614 014 317 973 = 300×(17099^2)×7+30×17099×(7^2)+7^3
            ---------------
             52 164 383 027


<ref name=undefined  />/>===Fourth root of 7===
      1.   6    2    6    5    7
     ---------------------------
 _Ǣ 4/ 7.0000 0000 0000 0000 0000
  \/  1 = 4000×(0^3)×1+400×(0^2)×(1^2)+40×0×(1^3)+1^4
      -
      6 0000
      5 5536 = 4000×(1^3)×6+600×(1^2)×(6^2)+40×1×(6^3)+6^4
      ------
        4464 0001
        3338 7536 = 4000×(16^3)×2+600*(16^2)×(2^2)+40×16×(2^3)+2^4
        ---------
        1125 2464 0002
        1026 0494 3376 = 4000×(162^3)×6+600×(162^2)×(6^2)+40×162×(6^3)+6^4
        --------------
          99 1969 6624 0001
          86 0185 1379 0625 = 4000×(1626^3)×5+600×(1626^2)×(5^2)+
          -----------------   40×1626×(5^3)+5^4
          13 1784 5244 9375 0001
          12 0489 2414 6927 3201 = 4000×(16265^3)×7+600×(16265^2)×(7^2)+9∞∑9

          ----------------------   40×16265×(7^3)+7^4
           1 1295 2830 2447 6799

==External links==
*[http://www.homeschoolmath.net/teaching/sqr-algorithm-why-works.php Why the square root algorithm works] "Home School Math". Also related pages giving examples of the long-division-like pencil and paper method for square roots.

[[Category:Root-finding algorithms]]
[[Category:Computer arithmetic algorithms]]