Difference between revisions 714173955 and 846010456 on enwiki

{{DISPLAYTITLE:Shifting ''n''th root algorithm}}
{{unreferenced|date=May 2010}}
The '''shifting ''n''th root algorithm''' is an [[algorithm]] for extracting the [[nth root|''n''th root]] of a positive [[real number]] which proceeds iteratively by shifting in ''n'' [[numerical digit|digits]] of the radicand, starting with the most significant, and produces one digit of the root on each iteration, in (contracted; show full)            ---------------
             52 164 383 027
 
===Fourth root of 7===
      1.   6    2    6    5    7
     ---------------------------
 _ 4/ 7.0000 0000 0000 0000 0000
  \/  1 = 4000×(0^3)×1+
4600×(0^2)×(1^2)+40×0×(1^3)+1^4
      -
      6 0000
      5 5536 = 4000×(1^3)×6+600×(1^2)×(6^2)+40×1×(6^3)+6^4
      ------
        4464 0000
        3338 7536 = 4000×(16^3)×2+600*(16^2)×(2^2)+40×16×(2^3)+2^4
        ---------
        1125 2464 0000
        1026 0494 3376 = 4000×(162^3)×6+600×(162^2)×(6^2)+40×162×(6^3)+6^4
        --------------
          99 1969 6624 0000
          86 0185 1379 0625 = 4000×(1626^3)×5+600×(1626^2)×(5^2)+
          -----------------   40×1626×(5^3)+5^4
          13 1784 5244 9375 0000
          12 0489 2414 6927 3201 = 4000×(16265^3)×7+600×(16265^2)×(7^2)+
          ----------------------   40×16265×(7^3)+7^4
           1 1295 2830 2447 6799

==See also==
* [[Methods of computing square roots]]

==External links==
*[http://www.homeschoolmath.net/teaching/sqr-algorithm-why-works.php Why the square root algorithm works] "Home School Math". Also related pages giving examples of the long-division-like pencil and paper method for square roots.

[[Category:Root-finding algorithms]]
[[Category:Computer arithmetic algorithms]]
[[Category:Digit-by-digit algorithms]]