Difference between revisions 763576002 and 795786344 on enwiki{{saved book |title= Machine Learning |subtitle= The Complete Guide |cover-image= |cover-color= | setting-papersize = a5 | setting-toc = auto | setting-columns = 1 }} ;Introduction and Main Principles :[[Machine learning]] :[[Data analysis]] :[[Occam's razor]] :[[Curse of dimensionality]] :[[No free lunch theorem]] :[[Accuracy paradox]] :[[Overfitting]] :[[Regularization (machine learning)]] :[[Inductive bias]] :[[Data dredging]] :[[Ugly duckling theorem]] :[[Uncertain data]] ;Background and Preliminaries ;Knowledge discovery in Databases :[[Knowledge discovery]] :[[Data mining]] :[[Predictive analytics]] :[[Predictive modelling]] :[[Business intelligence]] :[[Reactive business intelligence]] :[[Business analytics]] :[[Reactive business intelligence]] :[[Pattern recognition]] ;Reasoning :[[Abductive reasoning]] :[[Inductive reasoning]] :[[First-order logic]] :[[Inductive logic programming]] :[[Reasoning system]] :[[Case-based reasoning]] :[[Textual case based reasoning]] :[[Causality]] ;Search Methods :[[Nearest neighbor search]] :[[Stochastic gradient descent]] :[[Beam search]] :[[Best-first search]] :[[Breadth-first search]] :[[Hill climbing]] :[[Grid search]] :[[Brute-force search]] :[[Depth-first search]] :[[Tabu search]] :[[Anytime algorithm]] ;Statistics :[[Exploratory data analysis]] :[[Covariate]] :[[Statistical inference]] :[[Algorithmic inference]] :[[Bayesian inference]] :[[Base rate]] :[[Bias (statistics)]] :[[Gibbs sampling]] :[[Cross-entropy method]] :[[Latent variable]] :[[Maximum likelihood]] :[[Maximum a posteriori estimation]] :[[Expectation–maximization algorithm]] :[[Expectation propagation]] :[[Kullback–Leibler divergence]] :[[Generative model]] ;Main Learning Paradigms :[[Supervised learning]] :[[Unsupervised learning]] :[[Active learning (machine learning)]] :[[Reinforcement learning]] :[[Multi-task learning]] :[[Transduction (machine learning)|Transduction]] :[[Explanation-based learning]] :[[Offline learning]] :[[Online learning model]] :[[Online machine learning]] :[[Hyperparameter optimization]] ;Classification Tasks :[[Classification in machine learning]] :[[Concept class]] :[[Features (pattern recognition)]] :[[Feature vector]] :[[Feature space]] :[[Concept learning]] :[[Binary classification]] :[[Decision boundary]] :[[Multiclass classification]] :[[Class membership probabilities]] :[[Calibration (statistics)]] :[[Concept drift]] :[[Prior knowledge for pattern recognition]] :[[Iris flower data set]] ([[Classic data sets]]) ;Online Learning :[[Margin Infused Relaxed Algorithm]] ;Semi-supervised learning :[[Semi-supervised learning]] :[[One-class classification]] :[[Coupled pattern learner]] ;Lazy learning and nearest neighbors :[[Lazy learning]] :[[Eager learning]] :[[Instance-based learning]] :[[Cluster assumption]] :[[K-nearest neighbor algorithm]] :[[IDistance]] :[[Large margin nearest neighbor]] ;Decision Trees :[[Decision tree learning]] :[[Decision stump]] :[[Pruning (decision trees)]] :[[Mutual information]] :[[Adjusted mutual information]] :[[Information gain ratio]] :[[Information gain in decision trees]] :[[ID3 algorithm]] :[[C4.5 algorithm]] :[[CHAID]] :[[Information Fuzzy Networks]] :[[Grafting (decision trees)]] :[[Incremental decision tree]] :[[Alternating decision tree]] :[[Logistic model tree]] :[[Random forest]] ;Linear Classifiers :[[Linear classifier]] :[[Margin (machine learning)]] :[[Margin classifier]] :[[Soft independent modelling of class analogies]] ;Statistical classification :[[Statistical classification]] :[[Probability matching]] :[[Discriminative model]] :[[Linear discriminant analysis]] :[[Multiclass LDA]] :[[Multiple discriminant analysis]] :[[Optimal discriminant analysis]] :[[Fisher kernel]] :[[Discriminant function analysis]] :[[Multilinear subspace learning]] :[[Quadratic classifier]] :[[Variable kernel density estimation]] :[[Category utility]] ;Evaluation of Classification Models :[[Data classification (business intelligence)]] :[[Training set]] :[[Test set]] :[[Synthetic data]] :[[Cross-validation (statistics)]] :[[Loss function]] :[[Hinge loss]] :[[Generalization error]] :[[Type I and type II errors]] :[[Sensitivity and specificity]] :[[Precision and recall]] :[[F1 score]] :[[Confusion matrix]] :[[Matthews correlation coefficient]] :[[Receiver operating characteristic]] :[[Lift (data mining)]] :[[Stability in learning]] ;Feature Creation and Optimization :[[Data Pre-processing]] :[[Discretization of continuous features]] :[[Feature engineering]] :[[Feature selection]] :[[Feature extraction]] :[[Dimension reduction]] :[[Principal component analysis]] :[[Multilinear principal-component analysis]] :[[Multifactor dimensionality reduction]] :[[Targeted projection pursuit]] :[[Multidimensional scaling]] :[[Nonlinear dimensionality reduction]] :[[Kernel principal component analysis]] :[[Kernel eigenvoice]] :[[Gramian matrix]] :[[Gaussian process]] :[[Kernel adaptive filter]] :[[Isomap]] :[[Manifold alignment]] :[[Diffusion map]] :[[Elastic map]] :[[Locality-sensitive hashing]] :[[Spectral clustering]] :[[Minimum redundancy feature selection]] ;Clustering :[[Cluster analysis]] :[[K-means clustering]] :[[K-means++]] :[[K-medians clustering]] :[[K-medoids]] :[[DBSCAN]] :[[Fuzzy clustering]] :[[BIRCH (data clustering)]] :[[Canopy clustering algorithm]] :[[Cluster-weighted modeling]] :[[Clustering high-dimensional data]] :[[Cobweb (clustering)]] :[[Complete-linkage clustering]] :[[Constrained clustering]] :[[Correlation clustering]] :[[CURE data clustering algorithm]] :[[Data stream clustering]] :[[Dendrogram]] :[[Determining the number of clusters in a data set]] :[[FLAME clustering]] :[[Hierarchical clustering]] :[[Information bottleneck method]] :[[Lloyd's algorithm]] :[[Nearest-neighbor chain algorithm]] :[[Neighbor joining]] :[[OPTICS algorithm]] :[[Pitman–Yor process]] :[[Single-linkage clustering]] :[[SUBCLU]] :[[Thresholding (image processing)]] :[[UPGMA]]⏎ ⏎ ;Evaluation of Clustering Methods :[[Rand index]] :[[Dunn index]] :[[Davies–Bouldin index]] :[[Jaccard index]] :[[MinHash]] :[[K q-flats]] (contracted; show full):[[Behavioral targeting]] :[[Proactive Discovery of Insider Threats Using Graph Analysis and Learning]] :[[Robot learning]] :[[Computer vision]] :[[Facial recognition system]] :[[Outlier detection]] :[[Anomaly detection]] :[[Novelty detection]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://en.wikipedia.org/w/index.php?diff=prev&oldid=795786344.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|