Difference between revisions 83700176 and 83719275 on enwiki

:''For more background on this topic, see [[derivative]].''

===Example 1===
Consider ''f''(''x'') = 5:

: <math>f'(x)=\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\rightarrow 0} \frac{f(x+h)-5}{h} =  \lim_{h\rightarrow 0} \frac{(5-5)}{h} = \lim_{h\rightarrow 0} \frac{0}{h} = \lim_{h\rightarrow 0} 0 = 0</math>

The derivative of a [[constant function]] is [[0 (number)|zero]].
(contracted; show full)|
|<math> = \lim_{h\rightarrow 0} \frac{\frac{2 \sqrt{x}}{2 \sqrt{x+h}}-\frac{2 \sqrt{x+h}}{2 \sqrt{x}}}{h(2 \sqrt{x+h}+2 \sqrt{x})}</math>
|-
|
|<math> = \lim_{h\rightarrow 0} \frac{\frac{x}{\sqrt{x} \sqrt{x+h}}-\frac{x+h}{\sqrt{x} \sqrt{x+h}}}{h(2 \sqrt{x+h}+2 \sqrt{x})}</math>
|-
|

|<|FUCKKKKK|<math> = \frac{-1}{4 x \sqrt{x}}</math>
|}

[[Category:calculus]] [[Category:Mathematical notation]]

[[eo:Derivaĵo (ekzemploj)]]
[[fr:Exemples de calcul de dérivée]]