Difference between revisions 85887604 and 85888871 on enwiki:''For more background on this topic, see [[derivative]].'' ===Example 1=== Consider ''f''(''x'') = 5: : <math>f'(x)=\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\rightarrow 0} \frac{f(x+h)-5}{h} = \lim_{h\rightarrow 0} \frac{(5-5)}{h} = \lim_{h\rightarrow 0} \frac{0}{h} = \lim_{h\rightarrow 0} 0 = 0</math> The derivative of a [[constant function]] is [[0 (number)|zero]]. (contracted; show full)|<math> = \frac{1}{2 \sqrt{x}} </math> |} ===Example 5=== The same as the previous example, but now we search the derivative of the derivative.<br> Consider <math> f(x) = \sqrt{x} </math>: : {| |- |<math> f''(x)\,</math> |<math>= \lim_{h\rightarrow 0}\frac{f'(x+h)-f'(x)}{h} </math> |- | |<math> = \lim_{h\rightarrow<math> \begin{align} f''(x) &= \lim_{h\to 0}\frac{f'(x+h)-f'(x)}{h} \\ &= \lim_{h\to 0} \frac{\frac{1}{2 \sqrt{x+h}}-\frac{1}{2 \sqrt{x}}}{h}</math> |- | |<math> = \lim_{h\rightarrow \\ &= \lim_{h\to 0} \frac{\left(\frac{1}{2 \sqrt{x+h}}-\frac{1}{2 \sqrt{x}}\right)(2 \sqrt{x+h}+2 \sqrt{x})}{h(2 \sqrt{x+h}+2 \sqrt{x})}</math> |- | |<math> \\ &= \lim_{h\rightarrow 0} \frac{\frac{2 \sqrt{x}}{2 \sqrt{x+h}}-\frac{2 \sqrt{x+h}}{2 \sqrt{x}}}{h(2 \sqrt{x+h}+2 \sqrt{x})}</math> |- | |<math> = \lim_{h\rightarrow 0} \frac{\frac{x}{\sqrt{x} \sqrt{x+h}}-\frac{x+h}{\sqrt{x} \sqrt{x+h}}}{h(2 \sqrt{x+h}+2 \sqrt{x})}</math> |- | |<math> \\ &= -\frac{-1}{4 x \sqrt{x}}⏎ \end{align}⏎ </math>⏎ |} [[Category:calculus]] [[Category:Mathematical notation]] [[eo:Derivaĵo (ekzemploj)]] [[fr:Exemples de calcul de dérivée]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://en.wikipedia.org/w/index.php?diff=prev&oldid=85888871.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|