Difference between revisions 2240734 and 2241194 on enwikiversity[[Image:Detectors summary 3.png|thumb|right|250px|This tree diagram shows the relationship between types and classification of most common particle detectors. Credit: [[commons:User:Wdcf|Wdcf]].]] '''Radiation detectors''' provide a signal that is converted to an electric current. The device is designed so that the current provided is proportional to the characteristics of the incident radiation. (contracted; show full) {{clear}} ==Backgrounds== {{main|Astronomy/Backgrounds|Backgrounds}} The main components of background noise in neutron detection are high-energy photons, which aren't easily eliminated by physical barriers. '''Noise''' is a random fluctuation in an electrical signal, a characteristic of all [[w:electronics|electronic]] [[w:electrical circuit|circuits]].<ref name="noise">{{cite book |author=C. D. Motchenbacher , ⏎ |author2=J. A. Connelly |title=Low-noise electronic system design |publisher=Wiley Interscience |date=1993 |isbn= |doi= }}</ref> Noise generated by electronic devices varies greatly, as it can be produced by several different effects. [[w:Thermal noise|Thermal noise]] is unavoidable at non-zero temperature (see [[w:fluctuation-dissipation theorem|fluctuation-dissipation theorem]]), while other types depend mostly on device type (such as [[w:shot noise|shot noise]],<ref name="noise"/><ref name="shot">{{cite journal |author=L. B. Kish, ⏎ |author2=C. G. Granqvist |title=Noise in nanotechnology |journal=Microelectronics Reliability |volume=40 |issue=11 |month=November |year=2000 |pages=1833–37 (contracted; show full)se amount of accurate data and allowing measurements of the long term variation of the cosmic ray flux over a wide energy range, for nuclei from protons to iron. After the nominal mission, AMS-02 can continue to provide cosmic ray measurements. In addition to the understanding the radiation protection required for manned interplanetary flight, this data will allow the interstellar propagation and origins of cosmic rays to be pinned down."<ref name="Ting">{{cite book |author=Samuel Ting , ⏎ |author2=Manuel Aguilar-Benitez, ⏎ |author3=Silvie Rosier, ⏎ |author4=Roberto Battiston, ⏎ |author5=Shih-Chang Lee, ⏎ |author6=Stefan Schael, and ⏎ |author7=Martin Pohl |title=Alpha Magnetic Spectrometer - 02 (AMS-02) |publisher=NASA |location=Washington, DC USA |date=April 13, 2013 |url=http://www.nasa.gov/mission_pages/station/research/experiments/742.html |accessdate=2013-05-17 }}</ref> (contracted; show full) "Choosing materials with the largest stopping powers enables thinner detectors to be produced with resulting benefits in radiation tolerance (which is a bulk effect) and lower leakage currents. Alternatively, choosing smaller stopping powers will increase scattering efficiency, which is a requirement for polarimetry, or say, the upper detection plane of a double Compton telescope."<ref name="Owens">{{cite journal |author=Alan Owens , ⏎ |author2=A. Peacock |title=Compound semiconductor radiation detectors |journal=Nuclear Instruments and Methods in Physical Research A |month=September |year=2004 |volume=531 |issue=1-2 |pages=18-37 (contracted; show full) "With γ ray energy 50 times higher than the muon energy and a probability of muon production by the γ's of about 1%, muon detectors can match the detection efficiency of a GeV satellite detector if their effective area is larger by 10<sup>4</sup>."<ref name="Halzen">{{cite journal |author=Francis Halzen , ⏎ |author2=Todor Stanev, ⏎ |author3=Gaurang B. Yodh |title=γ ray astronomy with muons |journal=Physical Review D Particles, Fields, Gravitation, and Cosmology |month=April 1, |year=1997 |volume=55 |issue=7 |pages=4475-9 (contracted; show full)</sub>Co<sub>x</sub>O) ... responds to visible light ... Excitation into the intense <sup>4</sup>T<sub>1</sub>(P) ''d-d'' band at ∼2.0 eV (620 nm) leads to Co<sup>2+/3+</sup> ionization [with an] experimental maximum in the external photon-to-current conversion efficiencies at values well below the solid solubility of Co<sup>2+</sup> in ZnO."<ref name="Johnson">{{cite journal |author=Claire A. Johnson , ⏎ |author2=Alicia Cohn, ⏎ |author3=Tiffany Kaspar, ⏎ |author4=Scott A. Chambers, ⏎ |author5=G. Mackay Salley, and ⏎ |author6=Daniel R. Gamelin |title=Visible-light photoconductivity of Zn<sub>1-x</sub>Co<sub>x</sub>O and its dependence on Co<sup>2+</sup> concentration |journal=Physical Review B |month=September 6, |year=2011 |volume=84 |issue=12 |pages=8 (contracted; show full) The violet filter on each of the Viking Orbiters is centered at 440 nm with a range of 350-470 nm. At right is an image of the spectral range of the Violet filter (50 to 400 nm)<ref name="Benesh">{{cite book |author=M. Benesh and ⏎ |author2=F. Jepsen |title=SP-474 Voyager 1 and 2 Atlas of Six Saturnian Satellites Appendix A The Voyager Mission |publisher=NASA |location=Washington, DC USA |date=August 6, 1984 |url=http://history.nasa.gov/SP-474/appa.htm |accessdate=2013-04-01 }}</ref> on the Imaging Science System aboard the Voyager 1 and Voyager 2 Spacecraft, as defined by the instrument descriptions of the Narrow Angle Camera and Wide Angle Camera. {{clear}} ==Blues== {{main|Radiation astronomy/Blues|Blues}} In about 1981 "an efficient blue- and violet-sensitive RCA CCD did appear on the market."<ref name="Oke">{{cite journal |author=J. B. Oke and ⏎ |author2=J. E. Gunn |title=An Efficient Low Resolution and Moderate Resolution Spectrograph for the Hale Telescope |journal=Publications of the Astronomical Society of the Pacific |month=June |year=1982 |volume=94 |issue=06 |pages=586-94 |url= |arxiv= |bibcode=1982PASP...94..586O |doi=10.1086/131027 |pmid= |accessdate=2013-05-24 }}</ref> "To allow for the maximum number of high-efficiency coatings it was decided to separate the light into two separate spectrographs using a dichroic filter located immediately behind the entrance aperture of slit. The dichroic, mounter at 45°, reflects blue and violet light and transmits red and near-infrared light."<ref name="Oke"/> The blue- and violet-sensitive CCD successfully detected the helium lines from 501.5 to 318.8 nm.<ref name="Oke"/> "The MIC (Microchannel plate Intensified CCD (Charge Coupled Device)) detector ... [has a] measured resolution of the detector system [of] 18 micrometers FWHM at 490 nm. [It is] for the ESA X-Ray Multi Mirror Mission (XMM), where the MIC has been accepted as the blue detector for the incorporated Optical Monitor (OM)."<ref name=Fordham>{{cite book |author=J. L. A. Fordham, D. A. Bone, ⏎ |author2=D. A. Bone |author3=M. K. Oldfield, ⏎ |author4=J. G. Bellis, and ⏎ |author5=T. J. Norton |title=The MIC photon counting detector, In: ''Proceedings of an ESA Symposium on Photon Detectors for Space Instrumentation'' |publisher=European Space Agency |location= |date=December 1992 |editor= |pages=103-6 |url= |arxiv= |bibcode=1992ESASP.356..103F |doi= |pmid= |isbn= |accessdate=2013-05-24 }}</ref> "A0620-00 [is observed] with the [Faint Object Spectrograph] FOS blue detector" while aboard the Hubble Space Telescope.<ref name="McClintock">{{cite book |author=Jeffrey McClintock |title=Black Hole A0620-00 and Advection-Dominated Accretion, In: ''HST Proposal ID #7393'' |publisher=STSci |location=Baltimore, Maryland USA |date=December 1997 |editor= |pages= |url= |arxiv= |bibcode=1997hst..prop.7393M |doi= |pmid= |isbn= |accessdate=2013-05-24 }}</ref> ==Cyans== {{main|Radiation astronomy/Cyans|Cyans}} The Wide Field/Planetary Camera (PC-1) had an F469N, F487N, and F492M cyan filters in the filter wheel.<ref name="Krist"/> The Wide Field Planetary Camera (PC-2) replaced PC-1 on the Hubble Space Telescope and carried the following cyan filters on the same filter wheels: F467M, F469N, F487N.<ref name="Krist">{{cite book |author=John Krist and ⏎ |author2=Richard Hook |title=The Tiny Tim User’s Guide, Version 6.3 |publisher=Space Telescope Science Institute |location= |date=June 2004 |url=http://tinytim.stsci.edu/static/tinytim.pdf |accessdate=2013-01-22 }}</ref> The Advanced Camera for Surveys carried an F475W broadband cyan filter.<ref name="Krist"/> The Faint Object Camera (FOC) carries F470M, F480LP, and F486N cyan filters.<ref name="Krist"/> ==Greens== {{main|Radiation astronomy/Greens|Greens}} The Wide Field Planetary Camera (PC-1) of the Hubble Space Telescope was in use from about 1990 through 1993. It carried 48 filters on 12 filter wheels of four each. For the green band, these were the F492M, F502N, F517N, F547M, and the F555W. Those ending in 'N' are narrow-band filters.<ref name="Krist"/> One of these filters is F492M which allows imaging with the [O III]λλ4959,5007 and its adjacent green continuum. The filter band pass is centered at 490.6 nm with a full-width at half maximum (FWHM) of 36.4 nm.<ref name="Wilson">{{cite journal |author=A. S. Wilson, ⏎ |author2=J. A. Braatz, ⏎ |author3=T. M. Heckman, ⏎ |author4=J. H. Krolik, and ⏎ |author5=G. K. Miley |title=The Ionization Cones in the Seyfert Galaxy NGC 5728 |journal=The Astrophysical Journal Letters |month=December 20, |year=1993 |volume=419 |issue=12 |pages=L61-4 (contracted; show full) The Hubble PC-1 used the F785LP, F791W, F814W, F850LP, F875M, F889N, F1042M, and F1083N filters for [[infrared astronomy]]. The PC-2 used F785LP, F791W, F814W, F850LP, F953N, and F1042M. ==Submillimeters== {{main|Radiation astronomy/Submillimeters|Submillimeter astronomy|Submillimeters}} Metal-mesh filters have many applications for use in the far infrared (FIR)<ref name="melo08">{{cite journal |doi = 10.1364/AO.47.006064 |author = Arline M. Melo , ⏎ |author2=Mariano A. Kornberg, ⏎ |author3=Pierre Kaufmann, ⏎ |author4=Maria H. Piazzetta, |author5=Emílio C. Bortolucci, ⏎ |author6=Maria B. Zakia, ⏎ |author7=Otto H. Bauer, ⏎ |author8=Albrecht Poglitsch, and ⏎ |author9=Alexandre M. P. Alves da Silva |title = Metal mesh resonant filters for terahertz frequencies |journal = Applied Optics |year = 2008 |month = Nov |volume = 47 |issue = 32 |pages = 6064 |url = http://www.opticsinfobase.org/abstract.cfm?URI=ao-47-32-6064 |pmid = 19002231 |bibcode = 2008ApOpt..47.6064M }}</ref> and submillimeter regions of the [[w:electromagnetic spectrum|electromagnetic spectrum]]. These filters have been used in FIR and submillimeter astronomical instruments for over 4 decades,<ref name="ade06">{{cite journal |author = Ade, Peter A. R. |author2=Pisano, Giampaolo |author3=Tucker, Carole |author4=Weaver, Samuel |title = A Review of Metal Mesh Filters |journal = Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III. Proceedings of the SPIE. |year = 2006 |month = Jul |volume = 6275 |pages = 62750U |url = http://astrophysics.gsfc.nasa.gov/cosmology/spirit/tech_papers/Ade_filter_review.pdf }}</ref> in which they serve two main purposes: [[w:bandpass|bandpass]] or [[w:low-pass filters|low-pass filters]] are cooled and used to lower the [[w:noise equivalent power|noise equivalent power]] of cryogenic [[w:bolometer|bolometer]]s (detectors) by blocking excess thermal radiation outside of the frequency band of observation,<ref name="porterfield94">{{cite journal |doi = 10.1364/AO.33.006046 |author = D. W. Porterfield, ⏎ |author2=J. L. Hesler, R. Densing, ⏎ |author3=R. Densing |author4=E. R. Mueller, ⏎ |author5=T. W. Crowe, and ⏎ |author6=R. M. Weikle II |title = Resonant metal-mesh bandpass filters for the far infrared |journal = Applied Optics |year = 1994 |month = Sep |volume = 33 |issue = 25 |pages = 6046 |url = http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-33-25-6046 |pmid = 20936018 |bibcode = 1994ApOpt..33.6046P }}</ref> and bandpass filters can be used to define the observation band of the detectors. Metal-mesh filters can also be designed for use at 45° to split an incoming optical signal into several observation paths, or for use as a polarizing [[w:half wave plate|half wave plate]].<ref name="pisano08">{{Cite journal |doi = 10.1364/AO.47.006251 |author = Giampaolo Pisano, ⏎ |author2=Giorgio Savini, ⏎ |author3=Peter A. R. Ade, and ⏎ |author4=Vic Haynes |title = Metal-mesh achromatic half-wave plate for use at submillimeter wavelengths |journal = Applied Optics |year = 2008 |volume = 47 |issue = 33 |pages = 6251–6256 |url = http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-47-33-6251 (contracted; show full) A '''Faraday cup''' is a metal (conductive) cup designed to catch [[w:charged particle|charged particle]]s in vacuum. The resulting current can be measured and used to determine the number of ions or electrons hitting the cup.<ref name="Brown">{{cite journal |title=Faraday-Cup Monitors for High-Energy Electron Beams |journal=Review of Scientific Instruments |date=September 1956 |author=K. L. Brown , ⏎ |author2=G. W. Tautfest |volume=27 |issue=9 |pages=696–702 |doi=10.1063/1.1715674 |url=http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=RSINAK000027000009000696000001&idtype=cvips&prog=normal |format=PDF |accessdate=2007-09-13 (contracted; show full) {{clear}} ==Compounds== {{main|Chemicals/Compounds|Compounds}} "[T]he detection of absorption by interstellar hydrogen fluoride (HF) [in the submillimeter band occurs] along the sight line to the submillimeter continuum sources W49N and W51."<ref name="Sonnentrucker">{{cite journal |author=P. Sonnentrucker , ⏎ |author2=D. A. Neufeld, ⏎ |author3=T. G. Phillips, M. Gerin, D. C. Lis, M. De Luca, ⏎ |author4=M. Gerin |author5=D. C. Lis |author6=M. De Luca |author7=J. R. Goicoechea, ⏎ |author8=J. H. Black, T. A. Bell, ⏎ |author9=T. A. Bell |author10=F. Boulanger, ⏎ |author11=J. Cernicharo, A. Coutens, E. Dartois, M . Kaźmierczak, P. Encrenaz, ⏎ |author12=A. Coutens |author13=E. Dartois |author14=M . Kaźmierczak |author15=P. Encrenaz |author16=E. Falgarone, ⏎ |author17=T. R. Geballe, T. Giesen, B. Godard, P. F. Goldsmith, C. Gry, H. Gupta, P. Hennebelle, E. Herbst, P. Hily-Blant, C. Joblin, R. Kołos, ⏎ |author18=T. Giesen |author19=B. Godard |author20=P. F. Goldsmith |author21=C. Gry |author22=H. Gupta |author23=P. Hennebelle |author24=E. Herbst |author25=P. Hily-Blant |author26=C. Joblin |author27=R. Kołos |author28=J. Krełowski, ⏎ |author29=J. Martín-Pintado, ⏎ |author30=K. M. Menten, R. Monje, B. Mookerjea, J. Pearson, M. Perault, C. M. Persson, R. Plume, M. Salez, S. Schlemmer, M. Schmidt, J. Stutzki, D.Teyssier, C. Vastel, S. Yu, E. Caux, R. Güsten, W. A. Hatch, T. Klein, I. Mehdi, P. Morris and ⏎ |author31=R. Monje |author32=B. Mookerjea |author33=J. Pearson |author34=M. Perault |author35=C. M. Persson |author36=R. Plume |author37=M. Salez |author38=S. Schlemmer |author39=M. Schmidt |author40=J. Stutzki |author41=D.Teyssier |author42=C. Vastel |author43=S. Yu |author44=E. Caux |author45=R. Güsten |author46=W. A. Hatch |author47=T. Klein |author48=I. Mehdi |author49=P. Morris |author50=J. S. Ward |title=Detection of hydrogen fluoride absorption in diffuse molecular clouds with ''Herschel''/HIFI: a ubiquitous tracer of molecular gas |journal=Astronomy & Astrophysics |month=October 1, |year=2010 |volume=521 |issue= |pages=5 |url=http://arxiv.org/pdf/1007.2148.pdf |arxiv= |bibcode= |doi=10.1051/0004-6361/201015082 |pmid= |accessdate=2013-01-17 }}</ref> "[A]bsorption features in the submillimeter spectrum of Mars ... are due to the H<sub>2</sub>O (1<sub>10</sub>-1<sub>01</sub>) and <sup>13</sup>CO (5-4) rotational transitions."<ref name="Gurwell">{{cite journal |author=M. A. Gurwell, ⏎ |author2=E. A. Bergin, ⏎ |author3=G. J. Melnick, ⏎ |author4=M. L. N. Ashby, G. Chin, ⏎ |author5=G. Chin |author6=N. R. Erickson, ⏎ |author7=P. F. Goldsmith, M. Harwit, J. E. Howe, S. C. Kleiner, D. G. Koch, ⏎ |author8=M. Harwit |author9=J. E. Howe |author10=S. C. Kleiner |author11=D. G. Koch |author12=D. A. Neufeld, ⏎ |author13=B. M. Patten, R. Plume, R. Schieder, R. L. Snell, J. R. Stauffer, V. Tolls, Z. Wang, ⏎ |author14=R. Plume |author15=R. Schieder |author16=R. L. Snell |author17=J. R. Stauffer |author18=V. Tolls |author19=Z. Wang |author20=G. Winnewisser, and ⏎ |author21=Y. F. Zhang |title=''Submillimeter Wave Astronomy Satellite'' Observations of the Martian Atmosphere: Temperature and Vertical Distribution of Water Vapor |journal=The Astrophysical Journal |month=August 20, |year=2000 |volume=539 |issue=2 |pages=L143-6 (contracted; show full) Such scintillators enable pulse shape discrimination, i.e., particle identification based on the decay characteristics of the PMT electric pulse. For instance, when [[w:barium fluoride|BaF<sub>2</sub>]] is used, γ rays typically excite the fast component, while [[w:alpha particle|α particles]] excite the slow component: it is thus possible to identify them based on the decay time of the PMT signal. Scintillation neutron detectors include liquid organic scintillators,<ref>{{Cite journal ⏎ ⏎ | author = Yousuke⏎ ⏎ I., Daiki, S.; ⏎ |author2=Daiki, S. |author3=Hirohiko, K.; ⏎ |author4=Nobuhiro, S.; ⏎ |author5=Kenji, I. | title = Deterioration of pulse-shape discrimination in liquid organic scintillator at high energies | journal = Nuclear Science Symposium Conference Record, Volume: 1 | volume = 1| issue = | pages = 6/219–6/221 vol.1 | publisher = IEEE | location = | year = 2000 | url = | doi = 10.1109/NSSMIC.2000.949173 | id = | isbn = 0-7803-6503-8 }}</ref> crystals,<ref>{{Cite journal | author = Kawaguchi N., ⏎ |author2=Yanagida, T. |author23=Yokota, Y. |author34=Watanabe, K. |author45=Kamada, K. |author56=Fukuda, K. |author67=Suyama, T. |author78=Yoshikawa, A. |⏎ ⏎ |title = Study of crystal growth and scintillation properties as a neutron detector of 2-inch diameter eu doped LiCaAlF6 single crystal | journal = Nuclear Science Symposium Conference Record (NSS/MIC) | volume = | issue = | pages = 1493–1495 | publisher = IEEE | location = | year = 2009 | url = | doi = 10.1109/NSSMIC.2009.5402299 | isbn = 978-1-4244-3961-4 }}</ref><ref>[http://www.quantumdetectors.com/products/isis-neutron-beam-monitor Example crystal scintillator based neutron monitor.]</ref> plastics, glass<ref>{{Cite journal | author = Bollinger L.M., ⏎ |author2=Thomas, G.E. |author23=Ginther, R.J. | title = Neutron Detection With Glass Scintillators | journal = Nuclear Instruments and Methods | volume = 17 | pages = 97–116 | publisher = | location = | year = 1962 }}</ref> and scintillation fibers.<ref>{{Cite journal | author = Miyanaga N., ⏎ |author2=Ohba, N. |author23=Fujimoto, K. | title = Fiber scintillator/streak camera detector for burn history measurement in inertial confinement fusion experiment | journal = Review of Scientific Instruments | volume = 68 | issue = 1 | pages = 621–623 | publisher = | location = (contracted; show full) |author=G. F. Knoll |title=Radiation Detection and Measurement, 3rd edition |publisher=Wiley |date=1999 |isbn=978-0471073383 }}</ref> Semiconductors have been used for neutron detection.<ref name="Miroshghi">{{cite journal | author = Mireshghi A., ⏎ |author2=Cho, G. |author23=Drewery, J.S. |author34=Hong, W.S. |author45=Jing, T. |author56=Lee, H. |author67=Kaplan, S.N. |author78=Perez-Mendez, V. | title = High efficiency neutron sensitive amorphous silicon pixel detectors | journal = Nuclear Science | volume = 41 | issue = 4 , Part: 1–2 | pages = 915–921 | publisher = IEEE | location = (contracted; show full){{tlx|Radiation astronomy resources}}{{Principles of radiation astronomy}}{{Sisterlinks|Radiation detectors}} <!-- categories --> [[Category:Materials sciences/Lectures]] [[Category:Physics/Lectures]] [[Category:Radiation astronomy/Lectures]] [[Category:Resources last modified in January 2019]] [[Category:Technology/Lectures]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://en.wikiversity.org/w/index.php?diff=prev&oldid=2241194.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|