Revision 863632 of "Scritüra in TeX" on lmowiki

{{KOSSER}}
[[Image:TeX logo.svg|right|thumb|200px|El lugòtip dal TeX]]

El '''TeX''' l'è ü sistema da scriif pensat dal [[Donald Knuth]] in del [[1978]].

Dapress Zener 2003, le fórmüle matemàteghe sü la Wikipedia i pöö vess scrivüde cul sistema [[TeX]].

Chesta sintassi al è fisc plüü fàcila a scriif e a legí che ul [[Hypertext markup language|HTML]]: chí le fórmüle i è  presentade in HTML si pussíbil, altrameent una imàgen [[Portable Network Graphics|PNG]] a l’è prudüida pal serviduur.

Le regule da basa i è le sigütante:

*le fórmüle sa i mett intra <nowiki><math> ... </math></nowiki> ;
*i caràtar + - = / ' | * < > ( ) peuvent vess tapee diretameent ;
*da deent una fórmüla, sa i pöö delimitá di grupp al jütt da le parentesi grafe {}, par grupá una espressiú a índes, par esempi.
Par utegní da le parentesi grafe íntal rendüü, al cuventa dunca [[teclá]] \{ u \}.

Si vuu truvee da le dificültaa, esitee mia a dumandá dal jütt aj [[:Category:Druvatt da TeX|Druvatt (üsüari) da TeX]].


== Caràtar spezziaj ==
{| border="1"
! Funziunalitaa !! Sintassi !! Vargott al sembra
|-----

| Aczan<br/>
''L'esempi chí-cuntra al mustra i difereent aczan sü la lètera o.''
| \hat o \acute o \ddot o \vec o \check o \grave o \breve o \widehat {abc} \tilde o \bar o \dot o
| <math>\hat o \; \acute o \; \ddot o \; \vec o \; \check o \; \grave o \; \breve o \; \widehat {abc} \; \tilde o \; \bar o \; \dot o \; </math>
|-----
| Aczan in le parole
|mangj\acute{a}
|<math>mangj\acute{a}</math>
|-----

| rowspan="2" | Uperaduur binari
|\star \times \circ \cdot \bullet \cap \cup \sqcup \vee \wedge \oplus \otimes \triangle \vdots \ddots
|<math>\star</math> <math>\times</math> <math>\circ</math> <math>\cdot</math> <math>\bullet</math> <math>\cap</math> <math>\cup</math> <math>\sqcup</math> <math>\vee</math> <math>\wedge</math> <math>\oplus</math> <math>\otimes</math> <math>\triangle</math> <math>\vdots </math> <math>\ddots </math>
|-----
|\pm \mp \triangleleft \triangleright
|<math>\pm \mp \; \triangleleft \; \triangleright</math>
|-----

|Uperaduur n-ari
|\sum \prod \coprod \int \oint \bigcup \bigcap \bigsqcup \bigvee \bigwedge \bigoplus \bigotimes \bigodot \biguplus
|<math>\sum \prod \coprod \int \oint \bigcup \bigcap \bigsqcup \bigvee \bigwedge \bigoplus \bigotimes \bigodot \biguplus</math>
|-----

|Elissi
|x + \cdots + y ''u'' x + \ldots + y
|<math>x + \cdots + y</math> ''u'' <math>x + \ldots + y</math>
|----

|Separaduur
|( ) [ ] \{ \} \lfloor \rfloor \lceil \rceil \langle \rangle / \backslash <nowiki>| \|</nowiki> \uparrow \Uparrow \downarrow \Downarrow \updownarrow \Updownarrow
|<math>( \; ) \; [ \; ] \; \{ \; \} \; \lfloor \; \rfloor \; \lceil \; \rceil \; \langle \; \rangle \; / \; \backslash \; | \; \| \; \uparrow \; \Uparrow \; \downarrow \; \Downarrow \;\updownarrow \Updownarrow</math>
|-----

|Funziú std. (be)
|\sin x + \ln y +\operatorname{sgn} z
|<math>\sin x + \ln y +\operatorname{sgn} z</math>
|-----

|Funziú std. (maa)
|sin x + ln y + sgn z
|<math>sin x + ln y + sgn z\,</math>
|-----

|Funziú trigunumetriche
|\sin \cos \tan \operatorname{cotan} \sec \operatorname{cosec}
|<math>\sin\ \cos\ \tan\ \operatorname{cotan}\ \sec\ \operatorname{cosec}\,</math>
|-----

|Funziú trigunumetriche inverse
|\operatorname{Arcsin} \operatorname{Arccos} \operatorname{Arctan}
|<math>\operatorname{Arcsin}\ \operatorname{Arccos}\ \operatorname{Arctan},</math>
|-----

|Funziú trigonometriche iperbòliche
|\operatorname{sh} \operatorname{ch} \operatorname{th} \operatorname{coth}
|<math>\operatorname{sh}\ \operatorname{ch}\ \operatorname{th}\ \operatorname{coth},</math>
|-----

|Funziú d'anàlisi
|\lim \sup \inf \limsup \liminf \log \ln \lg \exp
|<math>\lim \sup \inf \limsup \liminf \log \ln \lg \exp \arg \min \max</math>
|-----

|Funziú d'àlgebra lineara
|\det \deg \dim \hom \ker
|<math>\det \deg \dim \hom \ker</math>
|-----

|Aritmetica mudülara
|s_k \equiv 0 \pmod{m}
|<math>s_k \equiv 0 \pmod{m}</math>
|-----

|Derivade
|\nabla \partial x \ dx \dot x \ddot y
|<math>\nabla \ \partial x \ dx \dot x\ \ddot y</math>
|-----

|Congjuunt
|\forall \exists \empty \varnothing \cap \cup
|<math>\forall \exists \empty \varnothing \cap \cup</math>
|-----

|Lògica
|p\wedge \land \bar{q} \to p\lor \lnot q \rightarrow p\vee
|<math>p\wedge \land \bar{q} \to p\lor \lnot q \rightarrow p\vee</math>
|-----

| rowspan="2" | Ariis
|\sqrt{2}\approx\pm 1,4
|<math>\sqrt{2}\approx\pm 1,4</math>
|-----
|\sqrt[n]{x}
|<math>\sqrt[n]{x}</math>
|-----

|Relazziú
|\sim \simeq \cong \le \ge \equiv \not\equiv \approx = \propto
|<math> \sim \ \simeq \ \cong \ \le \ \ge \ \equiv \ \not\equiv \ \approx = \propto</math>
|-----

|Relazziú negative
|\not\sim \not\simeq \not\cong \not\le \not\ge \not\equiv \not\approx \ne \not\propto
|<math> \not\sim \ \not\simeq \ \not\cong \ \not\le \ \not\ge \ \not\equiv \ \not\approx \ \ne \ \not\propto</math>
|-----

|Relazziú da cungjuunt
|\subset \subseteq \supset \supseteq \in \ni
|<math>\subset \; \subseteq \; \supset \; \supseteq \; \in \; \ni </math>
|-----

|Relazziú negative da cungjuunt
|\not\subset \not\subseteq \not\supset \not\supseteq \not\in \not\ni 
|<math>\not\subset \; \not\subseteq \; \not\supset \; \not\supseteq \; \not\in \; \not\ni </math>
|-----

|Geumetría
|\triangle \angle 45^\circ
|<math>\triangle \ \angle \ 45^\circ</math>
|-----

| rowspan="2" | Frezze
|\leftarrow \rightarrow \leftrightarrow<br/>
\longleftarrow \longrightarrow<br/>
\mapsto \longmapsto<br/>
\nearrow \searrow \swarrow \nwarrow
|<math>\leftarrow\ \rightarrow\ \leftrightarrow</math>
<math>\longleftarrow\ \longrightarrow</math>
<math>\mapsto\ \longmapsto</math>
<math>\nearrow\ \searrow\ \swarrow\ \nwarrow</math>
|-----
|\Leftarrow \Rightarrow \Leftrightarrow<br/>
\Longleftarrow \Longrightarrow \Longleftrightarrow
|<math>\Leftarrow\ \Rightarrow\ \Leftrightarrow</math>
<math>\Longleftarrow\ \Longrightarrow\ \Longleftrightarrow</math>
|-----

|Símul diveers
|\pm \mp \hbar \wr \dagger \ddagger \infty \vdash \top \bot \models \vdots \ddots \imath \ell \Re \Im \wp \mho
|<math>\pm \mp \hbar \wr \dagger \ddagger </math>
<math>\infty \ \vdash \ \top \bot \models \vdots \ddots \imath \; \ell \; \Re \; \Im  \; \wp \; \mho</math>
|}

== Índes, espusaant ==
{| border="1"
! Funziunalita !! Sintassi !! colspan="2" | Vargott al sembra
|-----

|
|
|en <b>HTML</b>
|en <b>PNG</b>
|-----

|Espusaant
|a^2
|<math>a^2</math>
|<math>a^2 \,\!</math>
|-----

|Índes
|a_2
|<math> a_2 </math>
|<math>a_2 \,\!</math>
|-----

| rowspan="2" | Regrupameent
|a^{2+2}
|<math>a^{2+2}</math>
|<math>a^{2+2} \,\!</math>
|-----
|a_{i,j}
|<math>a_{i,j}</math>
|<math>a_{i,j} \,\!</math>
|-----

|Cumbiná índes e espusaant
|x_2^3
|<math>x_2^3</math>
|<math>x_2^3 \,\!</math>
|-----

|Índes e espusaant precedeent
|{}_1^2\!X_3^4
| colspan="2" | <math>{}_1^2\!X_3^4</math>
|-----

|Derivada (bú)
|x'
|<math>x'</math>
|<math>x' \,\!</math>
|-----

|Derivee (malvaas in HTML)
|x^\prime
|<math>x^\prime</math>
|<math>x^\prime \,\!</math>
|-----

|Derivada (malvaas en PNG)
|x\prime
|<math>x\prime</math>
|<math>x\prime \,\!</math>
|-----

|Derivade tempurale
|\dot{x}, \ddot{x}
| colspan="2" | <math>\dot{x}, \ddot{x}</math>
|-----

|Sutalignaa e suralignaa
|\hat a \bar b \vec c \overline {g h i} \underline {j k l}
| colspan="2" | <math>\hat a \ \bar b \ \vec c\ \overline {g h i} \ \underline {j k l}</math>
|-----

|Vetuur e àngul
|\vec U \overrightarrow{AB} \widehat {POQ}
| colspan="2" | <math>\vec U\ \ \overrightarrow{AB}\ \ \widehat {POQ} </math>
|-----

|Suma
|\sum_{k=1}^N k^2
| colspan="2" | <math>\sum_{k=1}^N k^2</math>
|-----

|Prudüit
|\prod_{i=1}^N x_i
| colspan="2" | <math>\prod_{i=1}^N x_i</math>
|-----

|Límit
|\lim_{n \to \infty}x_n
| colspan="2" | <math>\lim_{n \to \infty}x_n</math>
|-----

|Integrala indefinida u definda
|\int \frac{1}{1+t^2}\, dt \int_{-N}^{N} e^x\, dx
| colspan="2" | <math>\int \frac{1}{1+t^2}\, dt \int_{-N}^{N} e^x\, dx</math>
|-----

|Integrala cürvilínia
|\oint_{C} x^3\, dx + 4y^2\, dy
| colspan="2" | <math>\oint_{C} x^3\, dx + 4y^2\, dy</math>
|-----

|Integrala dòbia
|\iint e^{-\frac{x^2+y^2}{2}\, dx dy
| colspan="2" | <math>\iint e^{-\frac{x^2+y^2}{2}}\, dx dy</math>
|-----

|Intersezziú
|\bigcap_1^{n} p
| colspan="2" | <math>\bigcap_1^{n} p</math>
|-----

|Riüniú
|\bigcup_1^{k} p
| colspan="2" | <math>\bigcup_1^{k} p</math>
|}


== Frazziú, matriis, plüü da línie ==
{| border="1"
|Frazziú
|\frac{2}{4} ''u'' {2 \over 4}
|<math>\frac{2}{4}</math> ''u'' <math>{2 \over 4}</math>
|-----

|Cueficeent binumiaj, cumbinazziú
|{n \choose k} ''u'' C_n^k
|<math>{n \choose k}</math> ''u'' <math>C_n^k</math>
|-----

| rowspan="6" | Matriis
|\begin{pmatrix} x & y \\ z & v \end{pmatrix}
|<math>\begin{pmatrix} x & y \\ z & v \end{pmatrix}</math>
|-----
|\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix}
|<math>\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix}</math>
|-----
|\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}
|<math>\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}</math>
|-----
|\begin{vmatrix} x & y \\ z & v \end{vmatrix}
|<math>\begin{vmatrix} x & y \\ z & v \end{vmatrix}</math>
|-----
|\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}
|<math>\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}</math>
|-----
|\begin{matrix} x & y \\ z & v \end{matrix}
|<math>\begin{matrix} x & y \\ z & v \end{matrix}</math>
|-----

|Distinzziú da caas
|f(n)=\left\{\begin{matrix} n/2, & \mbox{si}n\mbox{pari} \\ 3n+1, & \mbox{si}n\mbox{díspari} \end{matrix}\right.
|<math>f(n)=\left\{\begin{matrix} n/2, & \mbox{si}n\mbox{pari} \\ 3n+1, & \mbox{si}n\mbox{díspari} \end{matrix}\right.</math>
|-----

|Equazziú sü plüü línie
|\begin{align}f(n+1) &= (n+1)^2 \\ &= n^2 + 2n + 1\end{align}
|<math>\begin{align}f(n+1) &= (n+1)^2 \\ &= n^2 + 2n + 1\end{align}</math>
|}

== Zöögh da caràtar ==
{| border="1"
|Lètere greghe minüscule (<small>senza omicron !</small>)
|\alpha \beta \gamma \delta \epsilon \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi o \pi \varpi \rho \sigma \varsigma \tau \upsilon \phi \varphi \chi \psi \omega
|<math>\alpha\; \beta\; \gamma\; \delta\; \epsilon\; \varepsilon\; \zeta\; \eta\; \theta\; \iota\; \kappa\; \lambda\; \mu\; \nu\,</math><br\>
<math>\xi\; o\; \pi\; \varpi\; \rho\; \sigma\; \varsigma\; \tau\; \upsilon\; \phi\; \varphi\; \chi\; \psi\; \omega \,</math>
|-----

|Lètere greghe majüscule (<small>senza Omicron !</small>)
|\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta \Iota \Kappa \Lambda \Mu \Nu \Xi O \Pi \Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega
|<math>\Alpha \; \Beta \; \Gamma \; \Delta \; \Epsilon \; \Zeta \; \Eta \; \Theta \; \Iota \; \Kappa \; \Lambda \; \Mu \,</math><br\>
<math>\Nu \; \Xi\; O\; \Pi\; \Rho\; \Sigma\; \Tau\; \Upsilon\; \Phi\; \Chi\; \Psi\; \Omega\,</math>
|-----

|Cungjuunt üsüaj
|x\in\mathbb{R}\sub\mathbb{C}
|<math>x\in\mathbb{R}\subset\mathbb{C}</math>
|-----

|gras (<small>par i vetuur</small>)
|\mathbf{x}\cdot\mathbf{y} = 0
|<math>\mathbf{x}\cdot\mathbf{y} = 0</math>
|-----

|Fraktur
|\mathfrak{a b c d e f g h i j k l m}<br/>
\mathfrak{n o p q r s t u v w x y z}<br/>\mathfrak{A B C D E F G H I J K L M N}<br/>
\mathfrak{O P Q R S T U V W X Y Z}
|<math>\mathfrak{a b c d e f g h i j k l m}</math><br/>
<math>\mathfrak{n o p q r s t u v w x y z}</math><br/>
<math>\mathfrak{A B C D E F G H I J K L M N}</math><br/>
<math>\mathfrak{O P Q R S T U V W X Y Z}</math>
|-----

|Grass
|\mathbf{ABCDEFGHIJKLM}<br/>
\mathbf{NOPQRSTUVWXYZ}
|<math>\mathbf{ABCDEFGHIJKLM}\,</math><br/>
<math>\mathbf{NOPQRSTUVWXYZ}\,</math>
|-----

|Rumà
|\mathrm{ABCDEFGHIJKLM}<br/>
\mathrm{NOPQRSTUVWXYZ}
|<math>\mathrm{ABCDEFGHIJKLM}\,</math><br/>
<math>\mathrm{NOPQRSTUVWXYZ}\,</math>
|-----

|nurmaal
|ABCDEFGHIJKLM<br/>
NOPQRSTUVWXYZ<br/>
|<math>ABCDEFGHIJKLM \,</math><br/>
<math>NOPQRSTUVWXYZ \,</math>
|-----

|Script
|\mathcal{ABCDEFGHIJKLM}<br/>
\mathcal{NOPQRSTUVWXYZ}<br/>
|<math>\mathcal{ABCDEFGHIJKLM},</math><br/>
<math>\mathcal{NOPQRSTUVWXYZ}\,</math>
|-----

|Ebrée
|\aleph \beth \daleth \gimel
|<math>\aleph \; \beth \; \daleth \; \gimel</math>
|}


== Delimitaduur in le grande equazziú ==
{| border="1"
|Malvaas
|( \frac{1}{2} )
|<math>( \frac{1}{2} )</math>
|-----

|Mej
|\left ( \frac{1}{2} \right )
|<math>\left ( \frac{1}{2} \right )</math>
|}


\left e \right i pöö vess druvaa cun diveers delimitaduur :
{| border="1"
|Paréntesi
|\left( A \right)
|<math>\left( A \right)</math>
|-----

|Crochets
|\left[ A \right]
|<math>\left[ A \right]</math>
|-----

|Accolades
|\left\{ A \right\}
|<math>\left\{ A \right\}</math>
|-----

|Chevrons
|\left\langle A \right\rangle
|<math>\left\langle A \right\rangle</math>
|-----

|Bare (da valuur assulüda, par esempi)
|<nowiki>\left| A \right|</nowiki>
|<math>\left| A \right|</math>
|-----

|Duvrée \left. e \right. Par fá parí noma ü di delimitaduur
|\left. {A \over B} \right\} \to X
|<math>\left. {A \over B} \right\} \to X</math>
|}

== Spazziameent==
Ul TeX al gestiss autumaticameent la plüpaart di prubleem da spazziameent, però vuu pudii vurí cuntrulá ul spazziameent manüalameent in di caas.



{| border="1"
|dòbi quadratí
|a \qquad b
|<math>a \qquad b</math>
|-----

| quadratí
|a \quad b
|<math> a \quad b</math>
|-----

|graant spazzi
|a\ b
|<math>a\ b</math>
|-----

|spazzi medi
|a\;b
|<math>a\;b</math>
|-----

|spazzi fí
|a\,b
|<math>a\,b</math>
|-----

|mia da spazzi
|ab
|<math>ab\,</math>
|-----

|spazziameent negatiif
|a\!b
|<math>a\!b</math>
|}

== Astüzzia ==
Par furzá una fórmüla a la plena taja, al è assée da gjuntá un spazzi fí al finaal da la fórmüla: '''<nowiki>\,</nowiki>''' (contre-oblique vírgüla )

 <nowiki><math>a(1+e^2/2)</math></nowiki> al dà <math>a(1+e^2/2)</math>

 <nowiki><math>a(1+e^2/2)\,</math></nowiki> al dà <math>a(1+e^2/2)\,</math>

Par diminüí la taja da le fúrmüle int una línia da teest sa l pöö druvá \textstyle u \scriptstyle:

 <nowiki><math>A \left({B\over c}\right)</math></nowiki> al dà <math>A \left({B\over C}\right)</math>

 <nowiki><math>\textstyle{A \left({B\over C}\right)}</math></nowiki> al dà <math>\textstyle{A \left({B\over C}\right)}</math>

 <nowiki><math>\scriptstyle{A \left({B\over C}\right)}</math></nowiki> al dà <math>\scriptstyle{A \left({B\over C}\right)}</math>


== Vidée apó ==
=== Liamm da deet ===
*[[TeX]]
*[[LaTeX]]
*[[:Category:Druvatt da TeX|Druvatt (üsüari) da TeX]].
=== Liamm da fö ===

* {{en_icon}} [http://www.ctan.org/tex-archive/info/gentle/gentle.pdf?action=/starter/ Ducümeent d'intrudüzziú à TeX], sota furmaa [[Portable Document Format|PDF]]. 
* {{fr_icon}} [http://www.linux-kheops.com/doc/tex/autotex.htm Ducümeent d'intrudüzziú à TeX], legí le pàgine 32 a 41.
* {{en_icon}} [http://www.ams.org/tex/amslatex.html AMS LaTeX], le estensiú e cunvenziú de la suzzietaa Americana da matemàtica.
* [http://scienceclue.ath.cx/index.php?article=tex l2p online], par cumpilá dal codi TeX int una imàgen PNG.

* [http://www.latex-project.org/ Official LaTeX project site] lööch web pal desvilüpameent dal LaTeX.
* [http://www.miktex.org/ MikTeX]: una distribüzziú da LaTeX par Windows.
* [http://www.tug.org/ Ul Grupp d'Üsüari da TeX e LaTeX].

* [http://www.ctan.org/ CTAN. The Comprehensive TeX Archive Network]: l'archivi "ufizziaal" da tütt ul materiaal relazziunaa cun TeX e LaTeX.

[[Category:Wikipedia:aide technique|Formules TeX]]
[[Category:TeX]]




{{Contribuer}}