Difference between revisions 40369 and 43725 on lowiki'''ຕຳລາໄຕມຸມ'''(ພາສາອັງກິດ:trigonometric function)ແມ່ນ ບັນດາຕຳລາຄະນິດສາດ ທີ່ເກີດມາຈາກ ທິດສະດີຮູບສາມແຈ. ; ຄວາມສຳພັນພື້ນຖານ * sin(α + β) = sin α cos β + cos α sin β. * sin(α − β) = sin α cos β − cos α sin β. * cos(α + β) = cos α cos β − sin α sin β. * cos(α − β) = cos α cos β + sin α sin β. *<math>\tan(\alpha+\beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\, \tan\beta}. </math> *<math>\tan(\alpha-\beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha\, \tan\beta}. </math> ; :* sin 2α = 2 sin α cos α. :* cos 2α = cos<sup>2</sup> α − sin<sup>2</sup> α = 2 cos<sup>2</sup> α − 1 = 1 − 2 sin<sup>2</sup> α. :* <math>\tan 2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}</math> ; :* sin 3α = −4sin<sup>3</sup> α + 3sin α. :* cos 3α = 4cos<sup>3</sup> α − 3cos α. :* <math>\tan 3\alpha=\frac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha}</math> ; :*<math>\sin^2\!\left(\frac{\alpha}{2}\right) = \frac{1 - \cos\alpha}{2}.</math> :*<math>\cos^2\!\left(\frac{\alpha}{2}\right) = \frac{1 + \cos\alpha}{2}.</math> :*<math>\sin\!\left(\frac{\alpha}{2}\right)\cos\!\left(\frac{\alpha}{2}\right) = \frac{\sin\alpha}{2}. </math> ; :*<math>\sin^3 \alpha = {1\over 4}(3\sin\alpha - \sin 3\alpha).</math> :*<math>\cos^3 \alpha = {1\over 4}(3\cos\alpha + \cos 3\alpha).</math> ; :*<math>\sin\alpha + \sin\beta = 2\sin\!\left({\alpha +\beta \over 2}\right) \cos\!\left({\alpha -\beta \over 2}\right). </math> :*<math>\sin\alpha - \sin\beta = 2\cos\!\left({\alpha +\beta \over 2}\right) \sin\!\left({\alpha -\beta \over 2}\right). </math> :*<math>\cos\alpha + \cos\beta = 2\cos\!\left({\alpha +\beta \over 2}\right) \cos\!\left({\alpha -\beta \over 2}\right). </math> :* <math>\cos\alpha - \cos\beta = -2\sin\!\left({\alpha +\beta \over 2}\right) \sin\!\left({\alpha -\beta \over 2}\right). </math> ; :*<math> \sin\alpha\, \cos \beta = {1\over 2}\{\sin(\alpha+\beta) + \sin(\alpha-\beta)\}. </math> :*<math> \cos\alpha\, \sin\beta = {1\over 2}\{\sin(\alpha+\beta) - \sin(\alpha-\beta)\}. </math> :*<math> \cos\alpha\, \cos\beta = {1\over 2}\{\cos(\alpha+\beta) + \cos(\alpha-\beta)\}. </math> :*<math> \sin\alpha\, \sin\beta = -{1\over 2}\left\{\cos(\alpha+\beta) - \cos(\alpha-\beta)\right\}. </math> ; :*<math>a \sin\theta + b \cos\theta = \sqrt{a^2+b^2}\sin(\theta+\phi),</math> :: ແຕ່ <math>\phi=\tan^{-1}\!\left( \frac{b}{a} \right).</math> :<math>\sin{({\pi}z)}={\pi}z\prod_{n=1}^{\infty}{\left(1-\frac{z^2}{n^2}\right)}</math> :<math>\cos{({\pi}z)}=\prod_{n=1}^{\infty}{\left(1-\frac{z^2}{(n-\frac{1}{2})^2}\right)}</math> :<math>\pi\cot{{\pi}z}=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{1}{z+n}=\frac{1}{z}+\sum_{n=1}^{\infty}\frac{2z}{z^2-n^2}</math> :<math>\pi\tan{{\pi}z}=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{-1}{z+\textstyle\frac{1}{2}+n}=-\sum_{n=0}^{\infty}\frac{2z}{z^2-\left(n+\textstyle\frac{1}{2}\right)^2}</math> :<math>\frac{\pi}{\sin{\pi}z}=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{(-1)^{n}}{z+n}=\frac{1}{z}+\sum_{n=1}^{\infty}\frac{(-1)^{n}2z}{z^2-n^2}</math> :<math>\frac{\pi}{\cos{{\pi}z}}=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{(-1)^{n}}{z+\frac{1}{2}+n}=-\sum_{n=0}^{\infty}\frac{(-1)^{n}(2n+1)}{z^2-\left(n+\frac{1}{2}\right)^2}</math> *<math>{d\over dx}\sin x = \cos x,</math> *<math>{d\over dx}\cos x = -\sin x,</math> *<math>{d\over dx}\tan x = \sec^2 x = 1 + \tan^2 x.</math> :<math>x=\sin y \iff y=\sin^{-1}x,</math> :<math>x=\cos y \iff y=\cos^{-1}x,</math> :<math>x=\tan y \iff y=\tan^{-1}x,</math> :<math>x=\cot y \iff y=\cot^{-1}x,</math> :<math>x=\sec y \iff y=\sec^{-1}x,</math> :<math>-\frac{\pi}{2}\le\sin^{-1}x\le\frac{\pi}{2},</math> :<math>0\le\cos^{-1}x\le\pi,</math> : exp(''ix'') = cos ''x'' + ''i'' sin ''x'' : exp(−''ix'') = cos ''x'' − ''i'' sin ''x'' : <math>\cos x = \frac{e^{ix}+e^{-ix}}{2},</math> : <math>\sin x = \frac{e^{ix}-e^{-ix}}{2i}.</math> [[Category:ຄະນິດສາດ]] [[Category:ເລຂາຄະນິດ]]⏎ ⏎ [[ar:دوال مثلثية]] [[ast:Función trigonométrica]] [[az:Triqonometrik funksiyalar]] [[be:Трыганаметрычныя формулы]] [[bg:Тригонометрична функция]] [[bn:ত্রিকোণমিতিক অপেক্ষক]] [[bs:Trigonometrijske funkcije]] [[ca:Funció trigonomètrica]] [[cs:Goniometrická funkce]] [[cy:Ffwythiannau trigonometreg]] [[da:Trigonometrisk funktion]] [[de:Trigonometrische Funktion]] [[el:Τριγωνομετρική συνάρτηση]] [[en:Trigonometric functions]] [[eo:Trigonometria funkcio]] [[es:Función trigonométrica]] [[et:Trigonomeetrilised funktsioonid]] [[fa:تابعهای مثلثاتی]] [[fi:Trigonometrinen funktio]] [[fr:Fonction trigonométrique]] [[gl:Función trigonométrica]] [[he:פונקציות טריגונומטריות]] [[hi:त्रिकोणमितीय फलन]] [[hu:Szögfüggvények]] [[id:Fungsi trigonometrik]] [[io:Trigonometriala funciono]] [[is:Hornafall]] [[it:Funzione trigonometrica]] [[ja:三角関数]] [[ka:ტრიგონომეტრიული ფუნქციები]] [[km:អនុគមន៍ត្រីកោណមាត្រ]] [[ko:삼각함수]] [[la:Functiones trigonometricae]] [[lv:Trigonometriskās funkcijas]] [[ms:Fungsi trigonometri]] [[nl:Goniometrische functie]] [[nn:Trigonometrisk funksjon]] [[no:Trigonometriske funksjoner]] [[pl:Funkcje trygonometryczne]] [[pt:Função trigonométrica]] [[ro:Funcție trigonometrică]] [[ru:Тригонометрические функции]] [[sh:Trigonometrijske funkcije]] [[si:ත්රිකෝණමිතික ශ්රිත]] [[simple:Trigonometric function]] [[sk:Goniometrická funkcia]] [[sl:Trigonometrična funkcija]] [[sq:Funksionet trigonometrike]] [[sr:Тригонометријске функције]] [[sv:Trigonometrisk funktion]] [[ta:முக்கோணவியல் சார்புகள்]] [[tg:Функсияҳои тригонометрӣ]] [[th:ฟังก์ชันตรีโกณมิติ]] [[tr:Trigonometrik fonksiyonlar]] [[uk:Тригонометричні функції]] [[vi:Hàm lượng giác]] [[zh:三角函数]] [[zh-classical:三角函數]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://lo.wikipedia.org/w/index.php?diff=prev&oldid=43725.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|