Revision 40369 of "ຕຳລາໄຕມຸມ" on lowiki'''ຕຳລາໄຕມຸມ'''(ພາສາອັງກິດ:trigonometric function)ແມ່ນ ບັນດາຕຳລາຄະນິດສາດ ທີ່ເກີດມາຈາກ ທິດສະດີຮູບສາມແຈ.
; ຄວາມສຳພັນພື້ນຖານ
* sin(α + β) = sin α cos β + cos α sin β.
* sin(α − β) = sin α cos β − cos α sin β.
* cos(α + β) = cos α cos β − sin α sin β.
* cos(α − β) = cos α cos β + sin α sin β.
*<math>\tan(\alpha+\beta) =
\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\, \tan\beta}.
</math>
*<math>\tan(\alpha-\beta) =
\frac{\tan\alpha - \tan\beta}{1 + \tan\alpha\, \tan\beta}.
</math>
;
:* sin 2α = 2 sin α cos α.
:* cos 2α = cos<sup>2</sup> α − sin<sup>2</sup> α = 2 cos<sup>2</sup> α − 1 = 1 − 2 sin<sup>2</sup> α.
:* <math>\tan 2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}</math>
;
:* sin 3α = −4sin<sup>3</sup> α + 3sin α.
:* cos 3α = 4cos<sup>3</sup> α − 3cos α.
:* <math>\tan 3\alpha=\frac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha}</math>
;
:*<math>\sin^2\!\left(\frac{\alpha}{2}\right) = \frac{1 - \cos\alpha}{2}.</math>
:*<math>\cos^2\!\left(\frac{\alpha}{2}\right) = \frac{1 + \cos\alpha}{2}.</math>
:*<math>\sin\!\left(\frac{\alpha}{2}\right)\cos\!\left(\frac{\alpha}{2}\right)
= \frac{\sin\alpha}{2}.
</math>
;
:*<math>\sin^3 \alpha = {1\over 4}(3\sin\alpha - \sin 3\alpha).</math>
:*<math>\cos^3 \alpha = {1\over 4}(3\cos\alpha + \cos 3\alpha).</math>
;
:*<math>\sin\alpha + \sin\beta =
2\sin\!\left({\alpha +\beta \over 2}\right) \cos\!\left({\alpha -\beta \over 2}\right).
</math>
:*<math>\sin\alpha - \sin\beta =
2\cos\!\left({\alpha +\beta \over 2}\right) \sin\!\left({\alpha -\beta \over 2}\right).
</math>
:*<math>\cos\alpha + \cos\beta =
2\cos\!\left({\alpha +\beta \over 2}\right) \cos\!\left({\alpha -\beta \over 2}\right).
</math>
:* <math>\cos\alpha - \cos\beta =
-2\sin\!\left({\alpha +\beta \over 2}\right) \sin\!\left({\alpha -\beta \over 2}\right).
</math>
;
:*<math> \sin\alpha\, \cos \beta =
{1\over 2}\{\sin(\alpha+\beta) + \sin(\alpha-\beta)\}.
</math>
:*<math> \cos\alpha\, \sin\beta =
{1\over 2}\{\sin(\alpha+\beta) - \sin(\alpha-\beta)\}.
</math>
:*<math> \cos\alpha\, \cos\beta =
{1\over 2}\{\cos(\alpha+\beta) + \cos(\alpha-\beta)\}.
</math>
:*<math> \sin\alpha\, \sin\beta =
-{1\over 2}\left\{\cos(\alpha+\beta) - \cos(\alpha-\beta)\right\}.
</math>
;
:*<math>a \sin\theta + b \cos\theta = \sqrt{a^2+b^2}\sin(\theta+\phi),</math>
:: ແຕ່ <math>\phi=\tan^{-1}\!\left( \frac{b}{a} \right).</math>
:<math>\sin{({\pi}z)}={\pi}z\prod_{n=1}^{\infty}{\left(1-\frac{z^2}{n^2}\right)}</math>
:<math>\cos{({\pi}z)}=\prod_{n=1}^{\infty}{\left(1-\frac{z^2}{(n-\frac{1}{2})^2}\right)}</math>
:<math>\pi\cot{{\pi}z}=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{1}{z+n}=\frac{1}{z}+\sum_{n=1}^{\infty}\frac{2z}{z^2-n^2}</math>
:<math>\pi\tan{{\pi}z}=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{-1}{z+\textstyle\frac{1}{2}+n}=-\sum_{n=0}^{\infty}\frac{2z}{z^2-\left(n+\textstyle\frac{1}{2}\right)^2}</math>
:<math>\frac{\pi}{\sin{\pi}z}=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{(-1)^{n}}{z+n}=\frac{1}{z}+\sum_{n=1}^{\infty}\frac{(-1)^{n}2z}{z^2-n^2}</math>
:<math>\frac{\pi}{\cos{{\pi}z}}=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{(-1)^{n}}{z+\frac{1}{2}+n}=-\sum_{n=0}^{\infty}\frac{(-1)^{n}(2n+1)}{z^2-\left(n+\frac{1}{2}\right)^2}</math>
*<math>{d\over dx}\sin x = \cos x,</math>
*<math>{d\over dx}\cos x = -\sin x,</math>
*<math>{d\over dx}\tan x = \sec^2 x = 1 + \tan^2 x.</math>
:<math>x=\sin y \iff y=\sin^{-1}x,</math>
:<math>x=\cos y \iff y=\cos^{-1}x,</math>
:<math>x=\tan y \iff y=\tan^{-1}x,</math>
:<math>x=\cot y \iff y=\cot^{-1}x,</math>
:<math>x=\sec y \iff y=\sec^{-1}x,</math>
:<math>-\frac{\pi}{2}\le\sin^{-1}x\le\frac{\pi}{2},</math>
:<math>0\le\cos^{-1}x\le\pi,</math>
: exp(''ix'') = cos ''x'' + ''i'' sin ''x''
: exp(−''ix'') = cos ''x'' − ''i'' sin ''x''
: <math>\cos x = \frac{e^{ix}+e^{-ix}}{2},</math>
: <math>\sin x = \frac{e^{ix}-e^{-ix}}{2i}.</math>
[[Category:ຄະນິດສາດ]]
[[Category:ເລຂາຄະນິດ]]
[[ar:دوال مثلثية]]
[[ast:Función trigonométrica]]
[[az:Triqonometrik funksiyalar]]
[[be:Трыганаметрычныя формулы]]
[[bg:Тригонометрична функция]]
[[bn:ত্রিকোণমিতিক অপেক্ষক]]
[[bs:Trigonometrijske funkcije]]
[[ca:Funció trigonomètrica]]
[[cs:Goniometrická funkce]]
[[cy:Ffwythiannau trigonometreg]]
[[da:Trigonometrisk funktion]]
[[de:Trigonometrische Funktion]]
[[el:Τριγωνομετρική συνάρτηση]]
[[en:Trigonometric functions]]
[[eo:Trigonometria funkcio]]
[[es:Función trigonométrica]]
[[et:Trigonomeetrilised funktsioonid]]
[[fa:تابعهای مثلثاتی]]
[[fi:Trigonometrinen funktio]]
[[fr:Fonction trigonométrique]]
[[gl:Función trigonométrica]]
[[he:פונקציות טריגונומטריות]]
[[hi:त्रिकोणमितीय फलन]]
[[hu:Szögfüggvények]]
[[id:Fungsi trigonometrik]]
[[io:Trigonometriala funciono]]
[[is:Hornafall]]
[[it:Funzione trigonometrica]]
[[ja:三角関数]]
[[ka:ტრიგონომეტრიული ფუნქციები]]
[[km:អនុគមន៍ត្រីកោណមាត្រ]]
[[ko:삼각함수]]
[[la:Functiones trigonometricae]]
[[lv:Trigonometriskās funkcijas]]
[[ms:Fungsi trigonometri]]
[[nl:Goniometrische functie]]
[[nn:Trigonometrisk funksjon]]
[[no:Trigonometriske funksjoner]]
[[pl:Funkcje trygonometryczne]]
[[pt:Função trigonométrica]]
[[ro:Funcție trigonometrică]]
[[ru:Тригонометрические функции]]
[[sh:Trigonometrijske funkcije]]
[[si:ත්රිකෝණමිතික ශ්රිත]]
[[simple:Trigonometric function]]
[[sk:Goniometrická funkcia]]
[[sl:Trigonometrična funkcija]]
[[sq:Funksionet trigonometrike]]
[[sr:Тригонометријске функције]]
[[sv:Trigonometrisk funktion]]
[[ta:முக்கோணவியல் சார்புகள்]]
[[tg:Функсияҳои тригонометрӣ]]
[[th:ฟังก์ชันตรีโกณมิติ]]
[[tr:Trigonometrik fonksiyonlar]]
[[uk:Тригонометричні функції]]
[[vi:Hàm lượng giác]]
[[zh:三角函数]]
[[zh-classical:三角函數]]All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://lo.wikipedia.org/w/index.php?oldid=40369.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|