Difference between revisions 3684386 and 3684387 on mswiki{{pelbagai isu|{{cleanup|reason=memerlukan penterjemahan segera kerana sudah ditinggalkan sejak tahun 2008|date=Ogos 2014}}{{Terjemah|en|fabonacci number|date=Ogos 2014}}}} {{proses|BukanTeamBiasa}} [[Image:FibonacciBlocks.svg|thumb|180px|right|Suatu ubinan dengan segi empat yang tepinya adalah nombor Fibonaci berturut-turut pada panjangnya]] (contracted; show full) <math>F_{4n} = 4F_nF_{n+1}(F_{n+1}^2 + 2F_n^2) - 3F_n^2(F_n^2 + 2F_{n+1}^2)</math> These can be found experimentally using [[lattice reduction]], and are useful in setting up the [[special number field sieve]] to [[Factorization|factorize]] a Fibonacci number. Such relations exist in a very general sense for numbers defined by recurrence relations, see the section on multiplication formulae under [[Perrin number]]s for details. == Power seriesSiri kuasa== [[Fungsi generasi]] urutan Fibonacci adalah [[siri tenagkuasa]] :<math>s(x)=\sum_{k=0}^{\infty} F_k x^k.</math> Siri ini adalah mudah dan jawapan bentuk-tertutup menarik untuk <math>|x| < 1/\varphi</math> :<math>s(x)=\frac{x}{1-x-x^2}.</math> Jawapan ini dapat dibukti dengan menggunakan kemunculan semula Fibonacci untuk melebarkan setiap koefisi dalam jumlah infinite mentakrifkan <math>s(x)</math>: :<math>\begin{align} s(x) &= \sum_{k=0}^{\infty} F_k x^k \\ &= F_0 + F_1x + \sum_{k=2}^{\infty} \left( F_{k-1} + F_{k-2} \right) x^k \\ &= x + \sum_{k=2}^{\infty} F_{k-1} x^k + \sum_{k=2}^{\infty} F_{k-2} x^k \\ &= x + x\sum_{k=0}^{\infty} F_k x^k + x^2\sum_{k=0}^{\infty} F_k x^k \\ &= x + x s(x) + x^2 s(x) \end{align}</math> Menyelesaikan persamaan <math>s(x)=x+xs(x)+x^2s(x)</math> for <math>s(x)</math> menyebabkan jawapan bentuk tertutup. Terutamanya, buku puzzleteka-teki matematik menyatakan nilai curious aneh<math>\frac{s(\frac{1}{10})}{10}=\frac{1}{89}</math>, atau lebih biasanya :<math>\sum_{n = 1}^{\infty}{\frac {F(n)}{10^{(k + 1)(n + 1)}}} = \frac {1}{10^{2k + 2} - 10^{k + 1} - 1}</math> untuk semua integer <math>k >= 0</math>. Secara bicara, :<math>\sum_{n=0}^\infty\,\frac{F_n}{k^{n}}\,=\,\frac{k}{k^{2}-k-1}.</math> (contracted; show full) *[http://web.archive.org/web/20070715032716/http://mathdl.maa.org/convergence/1/?pa=content&sa=viewDocument&nodeId=630&bodyId=1002 Fibonacci Numbers] at [http://web.archive.org/web/20060212072618/http://mathdl.maa.org/convergence/1/ Convergence] * [http://www.tools4noobs.com/online_tools/fibonacci/ Online Fibonacci calculator] [[Kategori:Fibonacci numbers|*]] [[Kategori:Articles containing proofs]] <!-- interwiki --> All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://ms.wikipedia.org/w/index.php?diff=prev&oldid=3684387.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|