Difference between revisions 3684396 and 3684402 on mswiki{{pelbagai isu|{{cleanup|reason=memerlukan penterjemahan segera kerana sudah ditinggalkan sejak tahun 2008|date=Ogos 2014}}{{Terjemah|en|fabonacci number|date=Ogos 2014}}}} {{proses|BukanTeamBiasa}} [[Image:FibonacciBlocks.svg|thumb|180px|right|Suatu ubinan dengan segi empat yang tepinya adalah nombor Fibonaci berturut-turut pada panjangnya]] (contracted; show full) :<math>\sum_{k=1}^\infty \frac{(-1)^{k+1}}{\sum_{j=1}^k {F_{j}}^2} = \frac{\sqrt{5}-1}{2}.</math> Results such as these make it plausible that a closed formula for the plain sum of reciprocal Fibonacci numbers could be found, but none is yet known. Despite that, the [[reciprocal Fibonacci constant]] :<math>\psi = \sum_{k=1}^{\infty} \frac{1}{F_k} = 3.359885666243 \dots</math> has been proved [[irrational number|irrational]] by [[Richard André-Jeannin]]. == Primes and divisibilityNombor perdana dan kebolehbahagian== {{main|Fibonacci primeerdana}} A '''Fibonacci prime''' is a Fibonacci number that is [[prime number|primeerdana''' adalah nombor Fibonacci yang [[nombor perdana|perdana ]] {{OEIS|id=A005478}}. The first few are: : 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, … Fibonacci primes with thousands of digits have been found, but it is not known whether there are infinitely many. They must all have a prime index, excepterdana dengan beribu-ribu digit telah ditemui, tetapi tidak diketahui sama ada ia terdapat banyak tak terhingga. Semuanya mesti mempunyai indeks utama, kecuali ''F''<sub>4</sub> = 3. There are [[Arbitrarily large|arbitrarily long]] runs of [[composite number]]s and therefore also of composite Fibonacci numbers. With the exceptions ofdapat aturan [[besar sembarangan|yang sewenang-wenangnya panjang]] bagi [[nombor komposit]] dan dengan itu termasuk juga nombor Fibonacci komposit. Dengan pengecualian 1, 8 dand 144 (''F''<sub>0</sub> = ''F''<sub>1</sub>, ''F''<sub>6</sub> dand ''F''<sub>12</sub>) every Fibonacci number has a primesetiap nombor Fibonacci mempunyai facktor that is not autama yang bukan facktor of any smaller Fibonacci number ([[Carmichael's theoremmana-mana nombor Fibonacci yang lebih kecil ([[teorem Carmichael]]).<ref>Ron Knott, [http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibtable.html "The Fibonacci numbers"].</ref> No Fibonacci number greater than ''F''<sub>6</sub> = 8 is one greater or one less than a primeTiada nombor Fibonacci lebih besar daripada ''F''<sub>6</sub> = 8 yang lebih besar atau kurang satu daripada nuomberor perdana.<ref>Ross Honsberger ''Mathematical Gems III'' (AMS Dolciani Mathematcal Expositions No. 9), 1985, ISBN 0-88385-318-3, p. 133.</ref> Any three consecutive Fibonacci numbers, taken two at a time, are [[relatively prime]]: that is, :[[greatest common divisor|gcdSebarang tiga nombor Fibonacci berturut-turut, yang diambil dua pada satu masa, adalah [[perdana relatif|secara relatifnya perdana]]: itu adalah, :[[faktor sepunya terbesar|fstb]](''F''<sub>''n''</sub>, ''F''<sub>''n''+1</sub>) = gcd(''F''<sub>''n''</sub>, ''F''<sub>''n''+2</sub>) = 1. More generallyLebih umum, :gcd(''F''<sub>''n''</sub>, ''F''<sub>''m''</sub>) = ''F''<sub>gcd(''n'', ''m'').</sub><ref>[[Paulo Ribenboim]], ''My Numbers, My Friends'', Springer-Verlag 2000</ref><ref>Su, Francis E., et al. [http://www.math.hmc.edu/funfacts/ffiles/20004.5.shtml "Fibonacci GCD's, please."], (contracted; show full) *[http://web.archive.org/web/20070715032716/http://mathdl.maa.org/convergence/1/?pa=content&sa=viewDocument&nodeId=630&bodyId=1002 Fibonacci Numbers] at [http://web.archive.org/web/20060212072618/http://mathdl.maa.org/convergence/1/ Convergence] * [http://www.tools4noobs.com/online_tools/fibonacci/ Online Fibonacci calculator] [[Kategori:Fibonacci numbers|*]] [[Kategori:Articles containing proofs]] <!-- interwiki --> All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://ms.wikipedia.org/w/index.php?diff=prev&oldid=3684402.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|