Difference between revisions 6001681 and 6001682 on simplewiki

{{chembox
| Watchedfields = changed
| verifiedrevid = 443818478
| ImageFileL1 = Ferrocene.svg
| ImageSizeL1 = 80 px
| ImageFileR1 = Ferrocene-from-xtal-3D-balls.png
| ImageSizeR1 = 120 px
| ImageFile2 = Photo of Ferrocene (powdered).JPG
| ImageSize2 = 220 px
| ImageName2 = Powdered Ferrocene
| IUPACName = ferrocene, bis(η<sup>5</sup>-cyclopentadienyl)iron
| OtherNames = dicyclopentadienyl iron 
| Section1 = {{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 7329
| InChIKey = KTWOOEGAPBSYNW-UHFFFAOYAZ
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/2C5H5.Fe/c2*1-2-4-5-3-1;/h2*1-5H;/q2*-1;+2
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = KTWOOEGAPBSYNW-UHFFFAOYSA-N
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 102-54-5
| PubChem = 11985121
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 30672
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = U96PKG90JQ
| SMILES = [cH-]1cccc1.[cH-]1cccc1.[Fe+2]
| InChI = 1/2C5H5.Fe/c2*1-2-4-5-3-1;/h2*1-5H;/q2*-1;+2
}}
| Section2 = {{Chembox Properties
| Formula = C<sub>10</sub>H<sub>10</sub>Fe
| MolarMass = 186.04 g/mol
| Appearance = light orange powder
| Density = 1.107 g/cm<sup>3</sup> (0°C), 1.490 g/cm<sup>3</sup> (20 °C)<ref>{{cite web|url=http://www.chemicalbook.com/ProductMSDSDetailCB1414721_EN.htm|title=Ferrocene(102-54-5)|accessdate=3 February 2010}}</ref>
| MeltingPt = 114 °C72.5 °C<ref>{{RubberBible86th|page=3.258}}</ref>
| BoilingPt = 18249 °C
| Solubility = Insoluble in water, soluble in most organic solvents
 }}
| Section3 = {{Chembox Hazards
| MainHazards = 
| FlashPt = 
| Autoignition = 
 }}
(contracted; show full) chloride|ferric chloride]] with the goal of oxidatively coupling the diene to prepare [[fulvalene]]. Instead, they obtained a light orange powder of "remarkable stability."<ref name = "Pauson_Kealy">{{cite journal |author = T. J. Kealy, P. L. Pauson |title = A New Type of Organo-Iron Compound |journal = [[Nature (journal)|Nature]] |year = 1951 |volume = 168 |pages = 1039 |doi = 10.1038/1681039b0 |issue=4285}}</ref><ref>A second group independently discovered ferrocene
.  See:  : {{cite journal|author=S. A. Miller, J. A. Tebboth, and J. F. Tremaine (1952) "|year=1952|title=Dicyclopentadienyliron," ''|journal=Journal of the Chemical Society'' (London) , |pages =632-635.  See also: }}</ref><ref name=r1>{{cite journal|author = Pierre Laszlo and, Roald Hoffmann (2000) "[http://www.roaldhoffmann.com/pn/modules/Downloads/docs/Ferrocene.pdf,|title = Ferrocene:   Ironclad History ofr Rashomon Tale?]," '' |journal = Angewandte Chemie'' (  International Edition), vol. 39, no. 1,  |year = 2000 |volume = 39 |pages = 123-124.–124 |doi = 10.1002/(SICI)1521-3773(20000103)39:1<123::AID-ANIE123>3.0.CO;2-Z |pmid=10649350}}</ref> This stability was accorded to the aromatic character of the negative charged cyclopentadienyls, but the sandwich structure of the η<sup>5</sup> (pentahapto) compound was not recognized by them.

[[Robert Burns Woodward]] and [[Geoffrey Wilkinson]] deduced the structure based on its reactivity.<ref>{{cite journal |author = G. Wilkinson, M. Rosenblum, M. C. Whiting, R. B. Woodward |title = The Structure of Iron Bis-Cyclopentadienyl |journal = [[Journal of the American Chemical Society]] |year = 1952|volume = 74 |pages = 2125–2126 |doi = 10.1021/ja01128a527 |issue = 8}}</ref> Independently [[Ernst Otto Fischer]] also came to the conclusion of the sandwich structure and started to synthesize other metallocenes such as [[nickelocene]] and [[cobaltocene]].<ref>{{cite journal |author = E. O. Fischer, W. Pfab |title = Zur Kristallstruktur der Di-Cyclopentadienyl-Verbindungen des zweiwertigen Eisens, Kobalts und Nickels |journal = Zeitschrift für Naturforschung B |year = 1952 |volume = 7 |pages = 377–379 |doi =}}</ref><ref>A third group independently determined the structure of ferrocene.  See:  {{cite journal|author=P. F. Eiland and R. Pepinsky (1952) "|year=1952|title=X-ray examination of iron biscyclopentadienyl," ''|journal=Journal of the American Chemical Society'', vol. 74, |volume=74|page =4971.  See also:  Pierre Laszlo and [[Roald Hoffmann]] (2000) "[http://www.roaldhoffmann.com/pn/modules/Downloads/docs/Ferrocene.pdf Ferrocene:  Ironclad History of Rashomon Tale?]," ''Angewandte Chemie'' (International Edition), vol. 39, no. 1, pages 123-124.</ref> Ferrocene's structur}}</ref> The structure of ferrocene was confirmed by [[Nuclear magnetic resonance|NMR]] spectroscopy and [[X-ray crystallography]].<ref>{{cite journal |author = J. Dunitz, L. Orgel, A. Rich |title = The crystal structure of ferrocene |journal = [[Acta Crystallographica]] |year = 1956 |volume = 9 |pages = 373–375 |doi = 10.1107/S0365110X56001091 |issue = 4}}</ref><ref>{{cite journal|author = Pierre Laszlo, Roald Hoffmann,|title = Ferrocene: Ironclad History or Rashomon Tale? |journal = Angewandte Chemie International Edition |year = 2000 |volume = 39 |pages = 123–124 |doi = 10.1002/(SICI)1521-3773(20000103)39:1<123::AID-ANIE123>3.0.CO;2-Z |pmid=10649350}}</ref name=r1/> Its distinctive "sandwich" structure led to an explosion of interest in compounds of [[d-block]] metals with hydrocarbons, and invigorated the development of the flourishing study of organometallic chemistry. In 1973 [[Ernst Otto Fischer|Fischer]] of the [[Technische Universität München]] and [[Geoffrey Wilkinson|Wilkinson]] of [[Imperial College London]] shared a Nobel Prize for their work on metallocenes and other aspects of organometallic chemistry.<ref>{{cite web |url=http://nobelpr(contracted; show full), K. G. Orrell, A. G. Osborne, V. Sik |title = Dynamic NMR studies of ring rotation in substituted ferrocenes and ruthenocenes |journal = [[Journal of Organometallic Chemistry]] |year = 1991 |volume = 403 |pages = 195–208 |doi = 10.1016/0022-328X(91)83100-I}}</ref> and [[Scanning tunneling microscope|scanning tunneling microscopy]].<ref>{{cite journal |author = L. F. N. Ah Qune, K. Tamada, M. Hara |title = Self-Assembling Properties of 11-Ferrocenyl-1-Undecanethiol on Highly Oriented Pyrolitic 
  Graphite Characterized by Scanning Tunneling Microscopy |journal = E-Journal of Surface Science and Nanotechnology |year = 2008 |volume = 6 |pages = 119–123 |doi = 10.1380/ejssnt.2008.119}}</ref><ref>[{{cite journal|doi=10.1380/ejssnt.2008.119|url=http://www.jstage.jst.go.jp/article/ejssnt/6/0/119/_pdf |title=Self-Assembling Properties of 11-Ferrocenyl-1-Undecanethiol on Highly Oriented Pyrolitic Graphite Characterized by Scanning Tunneling Microscopy]}}</ref>

The carbon-carbon bond distances are 1.40 Å within the five membered rings, and the Fe-C bond distances are 2.04 Å.

==Synthesis and handling properties==
The first reported<ref>{{cite journal|year=1951|last1=Kealy|first1=T. J.|last2=Pauson|first2=P. L.|journal=[[Nature (journal)|Nature]]|volume=168|pages=1039|doi=10.1038/1681039b0|issue=4285}}</ref> synthesis of ferrocene used the [[Grignard reaction|Grignard reagent]] cyclopentadienyl magnesium bromide, which can be prepared by reacting [[cyclopentadiene]] with magnesium and [[bromoethane]] in [[anhydrous]] [[benzene]]. [[Iron(II) chloride]] is then suspended in anhydrous [[diethyl ether]] and added to the Grignard reagent.   The reaction sequence is:

:2 C<sub>5</sub>H<sub>5</sub>MgBr + FeCl<sub>2</sub> &rarr; Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> + MgCl<sub>2</sub> + MgBr<sub>2</sub>

Numerous other syntheses have been reported, including the direct reaction of [[gas]]-phase cyclopentadiene with metallic iron<ref>{{cite journal|doi=10.1021/ja01636a080|year=1954|last1=Wilkinson|first1=G.|authorlink1=Geoffrey Wilkinson|last2=Pauson|first2=P. L.|last3=Cotton|first3=F. A.|journal=[[J. Am. Chem. Soc.]]|volume=76|pages=1970|issue=7}}</ref> at 350 °C or with [[iron pentacarbonyl]].<ref>{{cite journal|doi=10.1002/9780470166024.ch1|year=1959|last1=Wilkinson|first1=G.|authorlink1=Geoffrey Wilkinson|last2=Cotton|first2=F. A.|title=Cyclopentadienyl and Arene Metal Compounds|journal=Progress in Inorganic Chemistry|volume=1|pages=1–124}}</ref>
[[Image:Ferrocene 3d model 2.png|thumb|right|A space-filling model of the [[staggered conformation]] of ferrocene.]]

:Fe + 2 C<sub>5</sub>H<sub>6</sub>(g) &rarr; Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> + H<sub>2</sub>(g)

:Fe(CO)<sub>5</sub> + 2 C<sub>5</sub>H<sub>6</sub>(g) &rarr; Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> + 5 CO(g) + H<sub>2</sub>(g)

More efficient preparative methods are generally a modification of the original [[transmetalation]] sequence using either commercially available [[sodium cyclopentadienide]]<ref>{{OrgSynth|title = Ferrocene|author = [[Geoffrey Wilkinson]]|collvol = 4|collvolpages = 473|year = 1963|prep = cv4p0473}}</ref> or freshly [[dicyclopentadiene|cracked]] cyclopentadiene and [[potassium hydroxide]]<ref>Jolly, W. L., The Synthesis and Characterization of Inorganic Compounds, Prentice-Hall: New Jersey, 1970.</ref> with anhydrous iron(II) chloride in ethereal solvents:

:2 NaC<sub>5</sub>H<sub>5</sub> + FeCl<sub>2</sub> → Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> + 2 NaCl

:FeCl<sub>2</sub>.4H<sub>2</sub>O + 2 C<sub>5</sub>H<sub>6</sub> + 2 KOH &rarr; Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> + 2 KCl + 6 H<sub>2</sub>O

Direct transmetalation can also be used to prepare ferrocene from other metallocenes, such as [[manganocene]]:<ref>{{cite journal |last1= Wilkinson|first1= G.|authorlink1= Geoffrey Wilkinson|last2= Cotton|first2= F. A.|last3= Birmingham|first3= J. M.|year= 1956|title= On manganese cyclopentadienide and some chemical reactions of neutral bis-cyclopentadienyl metal compounds|journal= J. Inorg. Nucl. Chem.|volume= 2|issue= 2|pages= 95|url= |doi=10.1016/0022-1902(56)80004-3 }}</ref>

:FeCl<sub>2</sub> + Mn(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> &rarr; MnCl<sub>2</sub> + Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>

As expected for a symmetric and uncharged species, ferrocene is soluble in normal organic solvents, such as benzene, but is insoluble in water. Ferrocene is an [[air]]-stable orange solid that readily [[Sublimation (phase transition)|sublime]]s, especially upon heating in a vacuum. It is stable to temperatures as high as 400 °C.<ref>Solomons, Graham, and Craig Fryhle. Organic Chemistry. 9th ed. USA: John Wiley & Sons, Inc., 2006.</ref> The following table gives typical values of vapor pressure of ferrocene at different temperatures:<ref>{{cite journal|doi=10.1021/je050502y|title=New Static Apparatus and Vapor Pressure of Reference Materials:   Naphthalene, Benzoic Acid, Benzophenone, and Ferrocene|year=2006|last1=Monte|first1=Manuel J. S.|last2=Santos|first2=Luís M. N. B. F.|last3=Fulem|first3=Michal|last4=Fonseca|first4=José M. S.|last5=Sousa|first5=Carlos A. D.|journal=Journal of Chemical & Engineering Data|volume=51|pages=757|issue=2}}</ref>

{| class="wikitable"
|-
! pPressure  (Pa)
! 1
! 10
! 100
|-
| tTemperature  (K)
| 298
| 323
| 353
|}

==Reactions==
===With electrophiles===
Ferrocene undergoes many reactions characteristic of aromatic compounds, enabling the preparation of substituted derivatives. A common undergraduate experiment is the [[Friedel-Crafts reaction]] of ferrocene with [[acetic anhydride]] (or [[acetyl chloride]]) in the presence of [[phosphoric acid]] as a catalyst.
[[Image:FcGen'l.png|400px|thumb|center|Important reactions of ferrocene with electrophiles and other reagents.]]

===Lithiation===
Ferrocene reacts readily with [[Butyllithium|butyl lithium]] to give 1,1'-dilithioferrocene, which in turn is a versatile [[nucleophile]]. But reaction of Ferrocene with [[Tert-Butyllithium|t-BuLi]] produces monolithioferrocene only.<ref>F Rebierea, O Samuela and H.B Kagan "{{cite journal|title=A convenient method for the preparation of monolithioferrocene"|journal= Tetrahedron Letters V|volume =31, I|issue =22,|year= 1990, P|pages =3121-3124. {{DOI||doi=10.1016/S0040-4039(00)94710-5}}</ref> These approaches are especially useful methods to introduce main group functionality, e.g. using S8, chlorophosphines, chlorosilanes. The strained compounds undergo [[ring-opening polymerization]].<ref>{{cite journal|author=David E. Herbert, Ulrich F. J. Mayer, Ian Manners |title=Strained Metallocenophanes and Related Organometallic Rings Containing pi-Hydrocarbon Ligands and Transition-Metal Centers|journal= Angew. Chem. Int. Ed. |year=2007, |volume =46,|pages= 5060 - 5081. {{DOI||doi=10.1002/anie.200604409}}</ref>

[[Image:FcLi2chem.png|450px|thumb|center|Some transformations of dilithioferrocene.]]

===Phosphorus derivatives===
Many phosphine derivatives of ferrocenes are known and some are used in commercialized processes.<ref name=Stepnicka>Petr Stepnicka "Ferrocenes: Ligands, Materials and Biomolecules" J. Wiley, Hoboken, 2008. ISBN 0470035854</ref> Simplest and best known is [[1,1'-Bis(diphenylphosphino)ferrocene|1,1'-bis(diphenylphosphino)ferrocene]] (dppf) prepared from dilithioferrocene.   For example, in the presence of [[aluminium chloride]] Me<sub>2</sub>NPCl<sub>2</sub> and ferrocene react to give ferrocenyl dichlorophosphine,<ref>{{cite journal |title = Ferrocene derivatives. 27. Ferrocenyldimethylphosphine | author = G.R. Knox, P.L. Pauson and D. Willison |journal = Organometallics |volume = 11 |issue = 8 |pages = 2930–2933 |year = 1992 |doi = 10.1021/om00044a038 }}</ref> whereas treatment with [[dichlorophenylphosphine|phenyldichlorophosphine]] under similar conditions forms ''P,P''-diferrocenyl-''P''-phenyl phosphine.<ref>{{cite journal |author = G.P. Sollott, H.E. Mertwoy, S. Portnoy and J.L. Snead |title = Unsymmetrical Tertiary Phosphines of Ferrocene by Friedel-Crafts Reactions. I. Ferrocenylphenylphosphines |journal = J. Org. Chem. |year = 1963 |volume = 28 |pages = 1090–1092 |doi = 10.1021/jo01039a055 |issue = 4 }}</ref> In common with [[anisole]] the reaction of ferrocene with P<sub>4</sub>S<sub>10</sub> forms a [[diferrocenyl-dithiadiphosphetane disulfide]].<ref>{{cite journal |title = 2,4-Diferrocenyl-1,3-dithiadiphosphetane 2,4-disulfide; structure and reactions with catechols and [PtCl<sub>2</sub>(PR<sub>3</sub>)<sub>2</sub>](R = Et or Bun) |author = Mark R. St. J. Foreman, Alexandra M. Z. Slawin and J. Derek Woollins |journal = J. Chem. Soc., Dalton Trans., |year = 1996 |pages = 3653–3657 |doi = 10.1039/DT9960003653 |issue = 18}}</ref>

===Redox chemistry===
{{main|Ferrocenium}}
Unlike the majority of organic compounds, ferrocene undergoes a one-electron oxidation at a low potential, around 0.5 V ''vs''. a [[saturated calomel electrode]] (SCE). It is also been used as standard in electrochemistry as Fc+/Fc = 0.64 V vs. SHE. Some [[electron]]-rich organic compounds (e.g., [[aniline]]) also are oxidized at low potentials, but only irreversibly. Oxidation of ferrocene gives a stable cation called ferrocenium. On a preparative scale, the oxidation is conveniently effected with FeCl<sub>3</sub> to give the violetblue-colored ion, [Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>]<sup>+</sup>, which is often isolated as its [[hexafluorophosphate|PF<sub>6</sub><sup>−</sup>]] salt. Alternatively, [[silver nitrate]] may be used as the oxidizer.

(contracted; show full)
A variety of substitution patterns are possible with ferrocene including substition at one or both of the rings. The most common substitution patterns are 1-substituted (one substituent on one ring) and 1,1'-disubstituted (one substituent on each ring). Usually the rings rotate freely, which simplifies the isomerism. Disubstituted ferrocenes can exist as either 1,2-, 1.3- or 1,1'- isomers, none of which are interconvertible. Ferrocenes that are asymmetrically disubstituted on one ring are chiral 
- for example [CpFe(EtC<sub>5</sub>H<sub>3</sub>Me)] is chiral but [CpFe(C<sub>5</sub>H<sub>3</sub>Me<sub>2</sub>)] is achiral.   This [[planar chirality]] arises despite no single atom being a [[stereocenter|stereogenic centre]].   The substituted ferrocene shown at right (a 4-(dimethylamino)pyridine derivative) has been shown to be effective when used for the [[kinetic resolution]] of [[racemic]] secondary [[alcohol]]s.<ref>{{cite journal |last1= Ruble|first1= J. C.|last2= Latham|first2= H. A.|last3= Fu|first3= G. C.|year= 1997|title= Effective Kinetic Resolution of Secondary Alcohols with a Planar-Chiral Analogue of 4-(dimethylamino)pyridine. Use of the Fe(C<sub>5</sub>Ph<sub>5</sub>) Group in Asymmetric Catalysis|journal= [[J. Am. Chem. Soc.]]|volume= 119|issue= 6|pages= 1492–1493|url= |doi= 10.1021/ja963835b}}</ref>

==Applications of ferrocene and its derivatives==
Ferrocene and its numerous derivatives have no large-scale applications, but have many niche uses that exploit the unusual structure (ligand scaffolds, pharmaceutical candidates), robustness (anti-knock formulations, precursors to materials), and redox (reagents and redox standards).

===Fuel additives===
Ferrocene and its derivatives are [[antiknock agent]]s used in the fuel for [[petrol engine]]s; they are safer than [[tetraethyllead]], previously used.<ref>[http://www.osd.org.tr/14.pdf Application of fuel additives]</ref> It is possible to buy at [[Halfords]] in the UK, a petrol additive solution which contains ferrocene which can be added to [[unleaded petrol]] to enable it to be used in [[vintage car]]s which were designed to run on leaded petrol.<ref>{{US patent|4104036}} "Iron-containing motor fuel compositions and method for using same" Tai S. Chao et al. Issue date: Aug 1, 1978</ref> The [[iron]] containing deposits formed from ferrocene can form a [[conductive]] coating on the [[spark plug]] surfaces.

===Pharmaceutical===
(contracted; show full)

===Materials chemistry===
Ferrocene, being readily decomposed to iron nanoparticles, can be used as a catalyst for the production of carbon nanotubes.<ref>
{{cite journal|author=Devin Conroya, Anna Moisalab, Silvana Cardosoa, Alan Windleb and John Davidson,''|journal=Chemical Engineering Science'',2010,'''65''',|year=2010|volume=65|pages=2965-2977}}</ref> Due to the fact that many organic reactions can be used to modify ferrocenes, it is the case that [[vinyl]] ferrocene can be made. The vinylThe [[vinyl]] ferrocene from ferrocene can be made by a [[Wittig reaction]] of the [[aldehyde]], a [[phosphonium salt]] and [[sodium hydroxide]].<ref>{{cite journal|author=Liu, Wan-yi; Xu, Qi-hai; Ma, Yong-xiang; Liang, Yong-min; Dong, Ning-li; Guan, De-peng,''|journal=J. Organomet. Chem.'', 2001, '''625''', 128 - |year=2001|volume=625|pages=128–132}}</ref> The vinyl ferrocene can be converted into a polymer which can be thought of as a ferrocenyl version of [[polystyrene]] (the phenyl groups are replaced with ferrocenyl groups).

===As a ligand scaffold===
Chiral ferrocenyl [[phosphine]]s are employed as ligands for transition-metal catalyzed reactions. Some of them have found industrial applications in the synthesis of pharmaceuticals and agrochemicals. For example, the [[diphosphines|diphosphine]] [[1,1'-Bbis(diphenylphosphino)ferrocene]] (dppf) is a valuable ligand for [[palladium]]-[[coupling reaction]]s.

==Derivatives and variations==
Ferrocene analogues can be prepared with variants of cyclopentadienyl. For example, bis[[indene|indenyl]]iron and bisfluorenyliron.<ref name=Stepnicka/>

[[Image:FcVarietyPack.png|400px|center|Various ferrocene derivatives where cyclopentadienyl has been replaced by related ligands]]

(contracted; show full)
*{{cite journal |author=[[Ernst Otto Fischer|Fischer, E. O.]], Pfab, W.|title=Cyclopentadien-Metallkomplexe, ein neuer typ metallorganischer Verbindungen |journal=Z. Naturforsch. B|year=1952| volume=7 |pages=377–379}}
;Others
*{{cite journal|author=Dunitz, J. D., Orgel, L. E.|title=Bis-Cyclopentadienyl 
- A Molecular Sandwich|journal= [[Nature (journal)|Nature]] |year=1953| volume=171 |pages= 121–122|doi = 10.1038/171121a0|issue=4342}}
*{{cite journal|author=Pauson, P. L.|title=Ferrocene-how it all began|journal=[[Journal of Organometallic Chemistry|J. Organomet. Chem.]]|year=2001|pages=637–639|volume = 637-639|doi = 10.1016/S0022-328X(01)01126-3}}
*{{cite book|author= Gerard Jaouen (ed.)| title=Bioorganometallics: Biomolecules, Labeling, Medicine| publisher=Wiley-VCH| location= Weinheim| year= 2006|isbn=978-3-527-30990-0}} (discussion of biological role of ferrocene and related compounds)
*University of Nottingham Molecular Videos, [http://www.periodicvideos.com/videos/mv_ferrocene.htm "Ferrocene"]

[[Category:Organoiron compounds]]
[[Category:Metallocenes]]
[[Category:Antiknock agents]]
[[Category:Sandwich compounds]]
[[Category:Cyclopentadienyl complexes]]

[[ca:Ferrocè]]
[[cs:Ferrocen]]
[[de:Ferrocen]]
[[es:Ferroceno]]
[[fr:Ferrocène]]
[[it:Ferrocene]]
[[nl:Ferroceen]]
[[ja:フェロセン]]
[[pl:Ferrocen]]
[[pt:Ferroceno]]
[[ru:Ферроцен]]
[[fi:Ferroseeni]]
[[sv:Ferrocen]]
[[th:เฟอร์โรซีน]]
[[tr:Ferrosen]]
[[uk:Фероцен]]
[[ur:Ferrocene]]
[[zh:二茂铁]]