Revision 482086 of "Numbers" on testwiki

See documentation in the [[User:Thingofme/sandbox/Numbers/doc|documentation page]].

== List of numbers from 1 to 1000 ==

=== 1 to 100 ===
{| class="wikitable mw-collapsible mw-collapsed"
!Numbers
!Prime factors
!Numbers
!Level
!List of factors<ref name=":12">Every number has a factor of 1 and itself and we will fill it in the column.</ref>
!Notes
|-
|1
|<math>1</math>
|1
|0
|1
|<ref name=":8">Not a prime and no level</ref><ref name=":9">First number in level. See [[Oeis:A025487|A025487]] (OEIS) for more details.</ref>
|-
|2
|<math>2</math>
|1
|1
|1, 2
|<ref name="Perfect1">Perfect one (or prime numbers). See [[User:Thingofme/sandbox/A000040|the prime page]] to display primes from 2 to <math>650^2 = 422500</math>, or see [[oeis:A000040|A000040]] (OEIS) for more details.</ref><ref name=":9" />
|-
|3
|<math>3</math>
|1
|1
|1, 3
|<ref name="Perfect1" /><ref name=":11">Second number in level</ref>
|-
|4
|<math>2^2</math>
|2
|2
|1, 2, 4
|<ref name="Perfect2">Perfect two. See [[oeis:A001248|A001248]] (OEIS) for more details.</ref><ref name=":9" />
|-
|5
|<math>5</math>
|1
|1
|1, 5
|<ref name="Perfect1" /><ref name=":13">Third number in level</ref>
|-
|6
|<math>2 * 3</math>
|2
|1
|1, 2, 3, 6
|<ref name="2one">Two one level (or semiprimes). See [[oeis:A006881|A006881]] (OEIS) for more details</ref><ref name=":9" />
|-
|7
|<math>7</math>
|1
|1
|1, 7
|<ref name="Perfect1" /><ref name=":14">Fourth number in level</ref>
|-
|8
|<math>2^3</math>
|3
|3
|1, 2, 4, 8
|<ref name="Perfect3">Perfect three. See [[oeis:A030078|A030078]] (OEIS) for more details.</ref><ref name=":9" />
|-
|9
|<math>3^2</math>
|2
|2
|1, 3, 9
|<ref name="Perfect2" /><ref name=":11" />
|-
|10
|<math>2 * 5</math>
|2
|1
|1, 2, 5, 10
|<ref name="2one" /><ref name=":11" />
|-
|11
|<math>11</math>
|1
|1
|1, 11
|<ref name="Perfect1" /><ref name=":15">Fifth number in level</ref>
|-
|12
|<math>2^2 * 3</math>
|3
|2
|1, 2, 3, 4, 6, 12
|<ref name="1two1one">One one level and one two level. See [[oeis:A054753|A054753]] (OEIS) for more details.</ref><ref name=":9" />
|-
|13
|<math>13</math>
|1
|1
|1, 13
|<ref name="Perfect1" /><ref name=":16">Sixth number in level</ref>
|-
|14
|<math>2 * 7</math>
|2
|1
|1, 2, 7, 14
|<ref name="2one" /><ref name=":13" />
|-
|15
|<math>3 * 5</math>
|2
|1
|1, 3, 5, 15
|<ref name="2one" /><ref name=":14" />
|-
|16
|<math>2^4</math>
|4
|4
|1, 2, 4, 8, 16
|<ref name="Perfect4">Perfect four. See [[oeis:A030514|A030514]] (OEIS) for more details.</ref><ref name=":9" />
|-
|17
|<math>17</math>
|1
|1
|1, 17
|<ref name="Perfect1" /><ref name=":17">Seventh number of the level</ref>
|-
|18
|<math>2 * 3^2</math>
|3
|2
|1, 2, 3, 6, 9, 18
|<ref name="1two1one" /><ref name=":11" />
|-
|19
|<math>19</math>
|1
|1
|1, 19
|<ref name="Perfect1" /><ref name=":18">Eighth number in level</ref>
|-
|20
|<math>2^2 * 5</math>
|3
|2
|1, 2, 4, 5, 10, 20
|<ref name="1two1one" /><ref name=":13" />
|-
|21
|<math>3 * 7</math>
|2
|1
|1, 3, 7, 21
|<ref name="2one" /><ref name=":15" />
|-
|22
|<math>2 * 11</math>
|2
|1
|1, 2, 11, 22
|<ref name="2one" /><ref name=":16" />
|-
|23
|<math>23</math>
|1
|1
|1, 23
|<ref name="Perfect1" /><ref name=":19">Ninth number in level</ref>
|-
|24
|<math>2^3 * 3</math>
|4
|3
|1, 2, 3, 4, 6, 8, 12, 24
|<ref name="1three1one">One one level and one three level. See [[oeis:A065036|A065036]] (OEIS) for more details.</ref><ref name=":9" />
|-
|25
|<math>5^2</math>
|2
|2
|1, 5, 25
|<ref name="Perfect2" /><ref name=":13" />
|-
|26
|2 x 13
|2
|1
|1, 2, 13, 26
|<ref name="2one" /><ref name=":17" />
|-
|27
|3 x 3 x 3
|3
|3
|1, 3, 9, 27
|<ref name="Perfect3" /><ref name=":11" />
|-
|28
|2 x 2 x 7
|3
|2
|1, 2, 4, 7, 14, 28
|<ref name="1two1one" /><ref name=":14" />
|-
|29
|29
|1
|1
|1, 29
|<ref name="Perfect1" /><ref name=":20">Tenth number in level</ref>
|-
|30
|2 x 3 x 5
|3
|1
|1, 2, 3, 5, 6, 10, 15, 30
|<ref name="3one">Three one level. It is also a [[sphenic number]]. See also: [[oeis:A007304|A007304]] (OEIS) for a sequence of sphemic numbers.</ref><ref name=":9" />
|-
|31
|31
|1
|1
|1, 31
|<ref name="Perfect1" /><ref name=":21">11th number in level</ref>
|-
|32
|2 x 2 x 2 x 2 x 2
|5
|5
|1, 2, 4, 8, 16, 32
|<ref name="Perfect5">Perfect five. See [[oeis:A050997|A050997]] (OEIS) for more details.</ref><ref name=":9" />
|-
|33
|3 x 11
|2
|1
|1, 3, 11, 33
|<ref name="2one" /><ref name=":18" />
|-
|34
|2 x 17
|2
|1
|1, 2, 17, 34
|<ref name="2one" /><ref name=":19" />
|-
|35
|5 x 7
|2
|1
|1, 5, 7, 35
|<ref name="2one" /><ref name=":20" />
|-
|36
|2 x 2 x 3 x 3
|4
|2
|1, 2, 3, 4, 6, 9, 12, 18, 36
|<ref name="2two">Two two level. See [[oeis:A085986|A085986]] (OEIS) for more details.</ref><ref name=":9" />
|-
|37
|37
|1
|1
|1, 37
|<ref name="Perfect1" /><ref name=":22">12th number in level</ref>
|-
|38
|2 x 19
|2
|1
|1, 2, 19, 38
|<ref name="2one" /><ref name=":21" />
|-
|39
|3 x 13
|2
|1
|1, 3, 13, 39
|<ref name="2one" /><ref name=":22" />
|-
|40
|2 x 2 x 2 x 5
|4
|3
|1, 2, 4, 5, 8, 10, 20, 40
|<ref name="1three1one" /><ref name=":11" />
|-
|41
|41
|1
|1
|1, 41
|<ref name="Perfect1" /><ref name=":23">13th number in level</ref>
|-
|42
|2 x 3 x 7
|3
|1
|1, 2, 3, 6, 7, 14, 21, 42
|<ref name="3one" /><ref name=":11" />
|-
|43
|43
|1
|1
|1, 43
|<ref name="Perfect1" /><ref name=":24">14th number in level</ref>
|-
|44
|2 x 2 x 11
|3
|2
|1, 2, 4, 11, 22, 44
|<ref name="1two1one" /><ref name=":15" />
|-
|45
|3 x 3 x 5
|3
|2
|1, 3, 5, 9, 15, 45
|<ref name="1two1one" /><ref name=":16" />
|-
|46
|2 x 23
|2
|1
|1, 2, 23, 46
|<ref name="2one" /><ref name=":23" />
|-
|47
|47
|1
|1
|1, 47
|<ref name="Perfect1" /><ref name=":25">15th number in level</ref>
|-
|48
|2 x 2 x 2 x 2 x 3
|5
|4
|1, 2, 3, 4, 6, 8, 12, 16, 24, 48
|<ref name="1one1four">One one level and one four level. See [[oeis:A178739|A178739]] (OEIS) for more details.</ref><ref name=":9" />
|-
|49
|7 x 7
|2
|2
|1, 7, 49
|<ref name="Perfect2" /><ref name=":14" />
|-
|50
|2 x 5 x 5
|3
|2
|1, 2, 5, 10, 25, 50
|<ref name="1two1one" /><ref name=":17" />
|-
|51
|3 x 17
|2
|1
|1, 3, 17, 51
|<ref name="2one" /><ref name=":24" />
|-
|52
|2 x 2 x 13
|3
|2
|1, 2, 4, 13, 26, 52
|<ref name="1two1one" /><ref name=":18" />
|-
|53
|53
|1
|1
|1, 53
|<ref name="Perfect1" /><ref name=":26">16th number in level</ref>
|-
|54
|2 x 3 x 3 x 3
|4
|3
|1, 2, 3, 6, 9, 18, 27, 54
|<ref name="1three1one" /><ref name=":13" />
|-
|55
|5 x 11
|2
|1
|1, 5, 11, 55
|<ref name="2one" /><ref name=":25" />
|-
|56
|2 x 2 x 2 x 7
|4
|3
|1, 2, 4, 7, 8, 14, 28, 56
|<ref name="1three1one" /><ref name=":14" />
|-
|57
|3 x 19
|2
|1
|1, 3, 19, 57
|<ref name="2one" /><ref name=":26" />
|-
|58
|2 x 29
|2
|1
|1, 2, 29, 58
|<ref name="2one" /><ref name=":27">17th number in level</ref>
|-
|59
|59
|1
|1
|1, 59
|<ref name="Perfect1" /><ref name=":27" />
|-
|60
|2 x 2 x 3 x 5
|4
|2
|1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
|<ref name="1two2one">One two level and two one level. See [[oeis:A085987|A085987]] (OEIS) for more details.</ref><ref name=":9" />
|-
|61
|61
|1
|1
|1, 61
|<ref name="Perfect1" />
|-
|62
|2 x 31
|2
|1
|1, 2, 31, 62
|<ref name="2one" />
|-
|63
|3 x 3 x 7
|3
|2
|1, 3, 7, 9, 21, 63
|<ref name="1two1one" />
|-
|64
|2 x 2 x 2 x 2 x 2 x 2
|6
|1
|1, 2, 4, 8, 16, 32, 64
|<ref>Perfect six. See [[oeis:A030516|A030516]] (OEIS) for more details.</ref>
|-
|65
|5 x 13
|2
|1
|1, 5, 13, 65
|<ref name="2one" />
|-
|66
|2 x 3 x 11
|3
|1
|1, 2, 3, 6, 11, 22, 33, 66
|<ref name="3one" />
|-
|67
|67
|1
|1
|1, 67
|<ref name="Perfect1" />
|-
|68
|2 x 2 x 17
|3
|2
|1, 2, 4, 17, 34, 68
|<ref name="1two1one" />
|-
|69
|3 x 23
|2
|1
|1, 3, 23, 69
|<ref name="2one" />
|-
|70
|2 x 5 x 7
|3
|1
|1, 2, 5, 7, 10, 14, 35, 70
|<ref name="3one" />
|-
|71
|71
|1
|1
|1, 71
|<ref name="Perfect1" />
|-
|72
|2 x 2 x 2 x 3 x 3
|5
|2
|1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72
|<ref name=":0">One three level and one two level</ref>
|-
|73
|73
|1
|1
|1, 73
|<ref name="Perfect1" />
|-
|74
|2 x 37
|2
|1
|1, 2, 37, 74
|<ref name="2one" />
|-
|75
|3 x 5 x 5
|3
|2
|1, 3, 5, 15, 25, 75
|<ref name="1two1one" />
|-
|76
|2 x 2 x 19
|3
|2
|1, 2, 4, 19, 38, 76
|<ref name="1two1one" />
|-
|77
|7 x 11
|2
|1
|1, 7, 11, 77
|<ref name="2one" />
|-
|78
|2 x 3 x 13
|3
|1
|1, 2, 3, 6, 13, 26, 39, 78
|<ref name="3one" />
|-
|79
|79
|1
|1
|1, 79
|<ref name="Perfect1" />
|-
|80
|2 x 2 x 2 x 2 x 5
|5
|4
|1, 2, 4, 5, 8, 10, 16, 20, 40, 80
|<ref name="1one1four"/>
|-
|81
|3 x 3 x 3 x 3
|4
|4
|1, 3, 9, 27, 81
|<ref name="Perfect4" />
|-
|82
|2 x 41
|2
|1
|1, 2, 41, 82
|<ref name="2one" />
|-
|83
|83
|1
|1
|1, 83
|<ref name="Perfect1" />
|-
|84
|2 x 2 x 3 x 7
|4
|2
|1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84
|<ref name="1two2one" />
|-
|85
|5 x 17
|2
|1
|1, 5, 17, 85
|<ref name="2one" />
|-
|86
|2 x 43
|2
|1
|1, 2, 43, 86
|<ref name="2one" />
|-
|87
|3 x 29
|2
|1
|1, 3, 29, 87
|<ref name="2one" />
|-
|88
|2 x 2 x 2 x 11
|4
|3
|1, 2, 4, 8, 11, 22, 44, 88
|<ref name="1three1one" />
|-
|89
|89
|1
|1
|1, 89
|<ref name="Perfect1" />
|-
|90
|2 x 3 x 3 x 5
|4
|2
|1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90
|<ref name="1two2one" />
|-
|91
|7 x 13
|2
|1
|1, 7, 13, 91
|<ref name="2one" />
|-
|92
|2 x 2 x 23
|3
|2
|1, 2, 4, 23, 46, 92
|<ref name="1two1one" />
|-
|93
|3 x 31
|2
|1
|1, 3, 31, 93
|<ref name="2one" />
|-
|94
|2 x 47
|2
|1
|1, 2, 47, 94
|<ref name="2one" />
|-
|95
|5 x 19
|2
|1
|1, 5, 19, 95
|<ref name="2one" />
|-
|96
|2 x 2 x 2 x 2 x 2 x 3
|6
|5
|1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96
|<ref name=":1">One one level and one five level</ref>
|-
|97
|97
|1
|1
|1, 97
|<ref name="Perfect1" />
|-
|98
|2 x 7 x 7
|3
|2
|1, 2, 7, 14, 49, 98
|<ref name="1two1one" />
|-
|99
|3 x 3 x 11
|3
|2
|1, 3, 9, 11, 33, 99
|<ref name="1two1one" />
|-
|100
|2 x 2 x 5 x 5
|4
|2
|1, 2, 4, 5, 10, 20, 25, 50, 100
|<ref name="2two" />
|}

=== 101 to 200 ===
{| class="wikitable mw-collapsible mw-collapsed"
!Numbers
!Prime factors
!Numbers
!Level
!List of factors<ref name=":12" />
!Notes
|-
|101
|101
|1
|1
|1, 101
|<ref name="Perfect1" />
|-
|102
|2 x 3 x 17
|3
|1
|1, 2, 3, 6, 17, 34, 51, 102
|<ref name="3one" />
|-
|103
|103
|1
|1
|1, 103
|<ref name="Perfect1" />
|-
|104
|2 x 2 x 2 x 13
|4
|3
|1, 2, 4, 8, 13, 26, 52, 104
|<ref name="1three1one" />
|-
|105
|3 x 5 x 7
|3
|1
|1, 3, 5, 7, 15, 21, 35, 105
|<ref name="3one" />
|-
|106
|2 x 53
|2
|1
|1, 2, 53, 106
|<ref name="2one" />
|-
|107
|107
|1
|1
|1, 107
|<ref name="Perfect1" />
|-
|108
|2 x 2 x 3 x 3 x 3
|5
|2
|1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108
|<ref name=":0" />
|-
|109
|109
|1
|1
|1, 109
|<ref name="Perfect1" />
|-
|110
|2 x 5 x 11
|3
|1
|1, 2, 5, 10, 11, 22, 55, 110
|<ref name="3one" />
|-
|111
|3 x 37
|2
|1
|1, 3, 37, 111
|<ref name="2one" />
|-
|112
|2 x 2 x 2 x 2 x 7
|5
|4
|1, 2, 4, 7, 8, 14, 16, 28, 56, 112
|<ref name="1one1four" />
|-
|113
|113
|1
|1
|1, 113
|<ref name="Perfect1" />
|-
|114
|2 x 3 x 19
|3
|1
|1, 2, 3, 6, 19, 38, 57, 114
|<ref name="3one" />
|-
|115
|5 x 23
|2
|1
|1, 5, 23, 115
|<ref name="2one" />
|-
|116
|2 x 2 x 29
|3
|2
|1, 2, 4, 29, 58, 116
|<ref name="1two1one" />
|-
|117
|3 x 3 x 13
|3
|2
|1, 3, 9, 13, 39, 117
|<ref name="1two1one" />
|-
|118
|2 x 59
|2
|1
|1, 2, 59, 118
|<ref name="2one" />
|-
|119
|7 x 17
|1
|1
|1, 7, 17, 119
|<ref name="Perfect1" />
|-
|120
|2 x 2 x 2 x 3 x 5
|5
|3
|1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120
|<ref name=":2">Two one level and one three level</ref>
|-
|121
|11 x 11
|2
|2
|1, 11, 121
|<ref name="Perfect2" />
|-
|122
|2 x 61
|2
|1
|1, 2, 61, 122
|<ref name="2one" />
|-
|123
|3 x 41
|2
|1
|1, 3, 41, 123
|<ref name="2one" />
|-
|124
|2 x 2 x 31
|3
|2
|1, 2, 4, 31, 62, 124
|<ref name="1two1one" />
|-
|125
|5 x 5 x 5
|3
|3
|1, 5, 25, 125
|<ref name="Perfect3" />
|-
|126
|2 x 3 x 3 x 7
|4
|2
|1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126
|<ref name="1two2one" />
|-
|127
|127
|1
|1
|1, 127
|<ref name="Perfect1" />
|-
|128
|2 x 2 x 2 x 2 x 2 x 2 x 2
|7
|7
|1, 2, 4, 8, 16, 32, 64, 128
|<ref>Perfect seven</ref>
|-
|129
|3 x 43
|2
|1
|1, 3, 43, 129
|<ref name="2one" />
|-
|130
|2 x 5 x 13
|3
|1
|1, 2, 5, 10, 13, 26, 65, 130
|<ref name="3one" />
|-
|131
|131
|1
|1
|1, 131
|<ref name="Perfect1" />
|-
|132
|2 x 2 x 3 x 11
|4
|2
|1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132
|<ref name="1two2one" />
|-
|133
|7 x 19
|2
|1
|1, 7, 19, 133
|<ref name="2one" />
|-
|134
|2 x 67
|2
|1
|1, 2, 67, 134
|<ref name="2one" />
|-
|135
|3 x 3 x 3 x 5
|4
|3
|1, 3, 5, 9, 15, 27, 45, 135
|<ref name="1three1one" />
|-
|136
|2 x 2 x 2 x 17
|4
|3
|1, 2, 4, 8, 17, 34, 68, 136
|<ref name="1three1one" />
|-
|137
|137
|1
|1
|1, 137
|<ref name="Perfect1" />
|-
|138
|2 x 3 x 23
|3
|1
|1, 2, 3, 6, 23, 46, 69, 138
|<ref name="3one" />
|-
|139
|139
|1
|1
|1, 139
|<ref name="Perfect1" />
|-
|140
|2 x 2 x 5 x 7
|4
|2
|1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140
|<ref name="1two2one" />
|-
|141
|3 x 47
|2
|1
|1, 3, 47, 141
|<ref name="2one" />
|-
|142
|2 x 71
|2
|1
|1, 2, 71, 142
|<ref name="2one" />
|-
|143
|11 x 13
|2
|1
|1, 11, 13, 143
|<ref name="2one" />
|-
|144
|2 x 2 x 2 x 2 x 3 x 3
|6
|4
|1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144
|<ref name=":5">One two level and one four level</ref>
|-
|145
|5 x 29
|2
|1
|1, 5, 29, 145
|<ref name="2one" />
|-
|146
|2 x 73
|2
|1
|1, 2, 73, 146
|<ref name="2one" />
|-
|147
|3 x 7 x 7
|3
|2
|1, 3, 7, 21, 49, 147
|<ref name="1two1one" />
|-
|148
|2 x 2 x 37
|3
|2
|1, 2, 4, 37, 74, 148
|<ref name="1two1one" />
|-
|149
|149
|1
|1
|1, 149
|<ref name="Perfect1" />
|-
|150
|2 x 3 x 5 x 5
|4
|2
|1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150
|<ref name="1two2one" />
|-
|151
|151
|1
|1
|1, 151
|<ref name="Perfect1" />
|-
|152
|2 x 2 x 2 x 19
|4
|3
|1, 2, 4, 8, 19, 38, 76, 152
|<ref name="1three1one" />
|-
|153
|3 x 3 x 17
|3
|2
|1, 3, 9, 17, 51, 153
|<ref name="1two1one" />
|-
|154
|2 x 7 x 11
|3
|1
|1, 2, 7, 11, 14, 22, 77, 154
|<ref name="3one" />
|-
|155
|5 x 31
|2
|1
|1, 5, 31, 155
|<ref name="2one" />
|-
|156
|2 x 2 x 3 x 13
|4
|2
|1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156
|<ref name="1two2one" />
|-
|157
|157
|1
|1
|1, 157
|<ref name="Perfect1" />
|-
|158
|2 x 79
|2
|1
|1, 2, 79, 158
|<ref name="2one" />
|-
|159
|3 x 53
|2
|1
|1, 3, 53, 159
|<ref name="2one" />
|-
|160
|2 x 2 x 2 x 2 x 2 x 5
|6
|5
|1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80, 160
|<ref name=":1" />
|-
|161
|7 x 23
|2
|1
|1, 7, 23, 161
|<ref name="2one" />
|-
|162
|2 x 3 x 3 x 3 x 3
|5
|4
|1, 2, 3, 6, 9, 18, 27, 54, 81, 162
|<ref name="1one1four" />
|-
|163
|163
|1
|1
|1, 163
|<ref name="Perfect1" />
|-
|164
|2 x 2 x 41
|3
|2
|1, 2, 4, 41, 82, 164
|<ref name="1two1one" />
|-
|165
|3 x 5 x 11
|3
|1
|1, 3, 5, 11, 15, 33, 55, 165
|<ref name="3one" />
|-
|166
|2 x 83
|2
|1
|1, 2, 83, 166
|<ref name="2one" />
|-
|167
|167
|1
|1
|1, 167
|<ref name="Perfect1" />
|-
|168
|2 x 2 x 2 x 3 x 7
|5
|3
|1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 28, 42, 56, 84, 168
|<ref name=":2" />
|-
|169
|13 x 13
|2
|2
|1, 13, 169
|<ref name="Perfect2" />
|-
|170
|2 x 5 x 17
|3
|1
|1, 2, 5, 10, 17, 34, 85, 170
|<ref name="3one" />
|-
|171
|3 x 3 x 19
|3
|2
|1, 3, 9, 19, 57, 171
|<ref name="1two1one" />
|-
|172
|2 x 2 x 43
|3
|2
|1, 2, 4, 43, 86, 172
|<ref name="1two1one" />
|-
|173
|173
|1
|1
|1, 173
|<ref name="Perfect1" />
|-
|174
|2 x 3 x 29
|3
|1
|1, 2, 3, 6, 29, 58, 87, 174
|<ref name="3one" />
|-
|175
|5 x 5 x 7
|3
|2
|1, 5, 7, 25, 35, 175
|<ref name="1two1one" />
|-
|176
|2 x 2 x 2 x 2 x 11
|5
|4
|1, 2, 4, 8, 11, 16, 22, 44, 88, 176
|<ref name="1one1four" />
|-
|177
|3 x 59
|2
|1
|1, 3, 59, 177
|<ref name="2one" />
|-
|178
|2 x 89
|2
|1
|1, 2, 89, 178
|<ref name="2one" />
|-
|179
|179
|1
|1
|1, 179
|<ref name="Perfect1" />
|-
|180
|2 x 2 x 3 x 3 x 5
|5
|2
|1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180
|<ref name=":3">Two two levels and one one level</ref>
|-
|181
|181
|1
|1
|1, 181
|<ref name="Perfect1" />
|-
|182
|2 x 7 x 13
|3
|1
|1, 2, 7, 13, 14, 26, 91, 182
|<ref name="3one" />
|-
|183
|3 x 61
|2
|1
|1, 3, 61, 183
|<ref name="2one" />
|-
|184
|2 x 2 x 2 x 23
|4
|3
|1, 2, 4, 8, 23, 46, 92, 184
|<ref name="1three1one" />
|-
|185
|5 x 37
|2
|1
|1, 5, 37, 185
|<ref name="2one" />
|-
|186
|2 x 3 x 31
|3
|1
|1, 2, 3, 6, 31, 62, 93, 186
|<ref name="3one" />
|-
|187
|11 x 17
|2
|1
|1, 11, 17, 187
|<ref name="2one" />
|-
|188
|2 x 2 x 47
|3
|2
|1, 2, 4, 47, 94, 188
|<ref name="1two1one" />
|-
|189
|3 x 3 x 3 x 7
|4
|3
|1, 3, 7, 9, 21, 27, 63, 189
|<ref name="1three1one" />
|-
|190
|2 x 5 x 19
|3
|1
|1, 2, 5, 10, 19, 38, 95, 190
|<ref name="3one" />
|-
|191
|191
|1
|1
|1, 191
|<ref name="Perfect1" />
|-
|192
|2 x 2 x 2 x 2 x 2 x 2 x 3
|7
|6
|1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 192
|<ref name=":4">One six level and one one level</ref>
|-
|193
|193
|1
|1
|1, 193
|<ref name="Perfect1" />
|-
|194
|2 x 97
|2
|1
|1, 2, 97, 194
|<ref name="2one" />
|-
|195
|3 x 5 x 13
|3
|1
|1, 3, 5, 13, 15, 39, 65, 195
|<ref name="3one" />
|-
|196
|2 x 2 x 7 x 7
|4
|2
|1, 2, 4, 7, 14, 28, 49, 98, 196
|<ref name="2two" />
|-
|197
|197
|1
|1
|1, 197
|<ref name="Perfect1" />
|-
|198
|2 x 3 x 3 x 11
|4
|2
|1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99, 198
|<ref name="1two2one" />
|-
|199
|199
|1
|1
|1, 199
|<ref name="Perfect1" />
|-
|200
|2 x 2 x 2 x 5 x 5
|5
|3
|1, 2, 4, 5, 10, 20, 40, 50, 100, 200
|<ref name=":0" />
|}

=== 201 to 300 ===
{| class="wikitable mw-collapsible mw-collapsed"
!Numbers
!Prime factors
!Numbers
!Level
!List of factors<ref name=":12" />
!Notes
|-
|201
|3 x 67
|2
|1
|1, 3, 67, 201
|<ref name="2one" />
|-
|202
|2 x 101
|2
|1
|1, 2, 101, 202
|<ref name="2one" />
|-
|203
|7 x 29
|2
|1
|1, 7, 29, 203
|<ref name="2one" />
|-
|204
|2 x 2 x 3 x 17
|4
|2
|1, 2, 3, 4, 6, 12, 17, 34, 51, 68, 102, 204
|<ref name="1two2one" />
|-
|205
|5 x 41
|2
|1
|1, 5, 41, 205
|<ref name="2one" />
|-
|206
|2 x 103
|2
|1
|1, 2, 103, 206
|<ref name="2one" />
|-
|207
|3 x 3 x 23
|3
|2
|1, 3, 9, 23, 69, 207
|<ref name="1two1one" />
|-
|208
|2 x 2 x 2 x 2 x 13
|5
|4
|1, 2, 4, 8, 13, 16, 26, 52, 104, 208
|<ref name="1one1four" />
|-
|209
|11 x 19
|2
|1
|1, 11, 19, 209
|<ref name="2one" />
|-
|210
|2 x 3 x 5 x 7
|4
|1
|1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 28, 35, 42, 70, 105, 210
|<ref name=":6">Four one level</ref>
|-
|211
|211
|1
|1
|1, 211
|<ref name="Perfect1" />
|-
|212
|2 x 2 x 53
|3
|2
|1, 2, 4, 53, 106, 212
|<ref name="1two1one" />
|-
|213
|3 x 71
|2
|1
|1, 3, 71, 213
|<ref name="2one" />
|-
|214
|2 x 107
|2
|1
|1, 2, 107, 214
|<ref name="2one" />
|-
|215
|5 x 43
|2
|1
|1, 5, 43, 215
|<ref name="2one" />
|-
|216
|2 x 2 x 2 x 3 x 3 x 3
|6
|3
|1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 216
|<ref>Two three level</ref>
|-
|217
|7 x 31
|2
|1
|1, 7, 31, 217
|<ref name="2one" />
|-
|218
|2 x 109
|2
|1
|1, 2, 109, 218
|<ref name="2one" />
|-
|219
|3 x 73
|2
|1
|1, 3, 73, 219
|<ref name="2one" />
|-
|220
|2 x 2 x 5 x 11
|4
|2
|1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220
|<ref name="1two2one" />
|-
|221
|13 x 17
|2
|1
|1, 13, 17, 221
|<ref name="2one" />
|-
|222
|2 x 3 x 37
|3
|1
|1, 2, 3, 6, 37, 74, 111, 222
|<ref name="3one" />
|-
|223
|223
|1
|1
|1, 223
|<ref name="Perfect1" />
|-
|224
|2 x 2 x 2 x 2 x 2 x 7
|6
|5
|1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 112, 224
|<ref name=":1" />
|-
|225
|3 x 3 x 5 x 5
|4
|2
|1, 3, 5, 9, 15, 25, 45, 75, 225
|<ref name="2two" />
|-
|226
|2 x 113
|2
|1
|1, 2, 113, 226
|<ref name="2one" />
|-
|227
|227
|1
|1
|1, 227
|<ref name="Perfect1" />
|-
|228
|2 x 2 x 3 x 19
|4
|2
|1, 2, 3, 4, 6, 12, 19, 38, 57, 76, 114, 228
|<ref name="1two2one" />
|-
|229
|229
|1
|1
|1, 229
|<ref name="Perfect1" />
|-
|230
|2 x 5 x 23
|3
|1
|1, 2, 5, 10, 23, 46, 115, 230
|<ref name="3one" />
|-
|231
|3 x 7 x 11
|3
|1
|1, 3, 7, 11, 21, 33, 77, 231
|<ref name="3one" />
|-
|232
|2 x 2 x 2 x 29
|4
|3
|1, 2, 4, 8, 29, 58, 116, 232
|<ref name="1three1one" />
|-
|233
|233
|1
|1
|1, 233
|<ref name="Perfect1" />
|-
|234
|2 x 3 x 3 x 13
|4
|2
|1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 234
|<ref name="1two2one" />
|-
|235
|5 x 47
|2
|1
|1, 5, 47, 235
|<ref name="2one" />
|-
|236
|2 x 2 x 59
|3
|2
|1, 2, 4, 59, 118, 236
|<ref name="1two1one" />
|-
|237
|3 x 79
|2
|1
|1, 3, 79, 237
|<ref name="2one" />
|-
|238
|2 x 7 x 17
|3
|1
|1, 2, 7, 14, 17, 238
|<ref name="3one" />
|-
|239
|239
|1
|1
|1, 239
|<ref name="Perfect1" />
|-
|240
|2 x 2 x 2 x 2 x 3 x 5
|6
|4
|1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240
|<ref name=":7">One four level and two one level</ref>
|-
|241
|241
|1
|1
|1, 241
|<ref name="Perfect1" />
|-
|242
|2 x 11 x 11
|3
|2
|1, 2, 11, 22, 121, 242
|<ref name="1two1one" />
|-
|243
|3 x 3 x 3 x 3 x 3
|5
|5
|1, 3, 9, 27, 81, 243
|<ref name="Perfect5" />
|-
|244
|2 x 2 x 61
|3
|2
|1, 2, 4, 61, 122, 246
|<ref name="1two1one" />
|-
|245
|5 x 7 x 7
|3
|2
|1, 5, 7, 35, 49, 245
|<ref name="1two1one" />
|-
|246
|2 x 3 x 41
|3
|1
|1, 2, 3, 6, 41, 82, 123, 246
|<ref name="3one" />
|-
|247
|13 x 19
|2
|1
|1, 13, 19, 247
|<ref name="2one" />
|-
|248
|2 x 2 x 2 x 31
|4
|3
|1, 2, 4, 8, 31, 62, 124, 248
|<ref name="1three1one" />
|-
|249
|3 x 83
|2
|1
|1, 3, 83, 249
|<ref name="2one" />
|-
|250
|2 x 5 x 5 x 5
|4
|3
|1, 2, 5, 10, 25, 50, 125, 250
|<ref name="1three1one" />
|-
|251
|251
|1
|1
|1, 251
|<ref name="Perfect1" />
|-
|252
|2 x 2 x 3 x 3 x 7
|5
|2
|1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 32, 42, 63, 84, 126, 252
|<ref name=":3" />
|-
|253
|11 x 23
|2
|1
|1, 11, 23, 253
|<ref name="2one" />
|-
|254
|2 x 127
|2
|1
|1, 2, 127, 254
|<ref name="2one" />
|-
|255
|3 x 5 x 17
|3
|1
|1, 3, 5, 15, 17, 51, 85, 255
|<ref name="3one" />
|-
|256
|2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
|8
|8
|1, 2, 4, 8, 16, 32, 64, 128, 256
|<ref>Perfect eight</ref>
|-
|257
|257
|1
|1
|1, 257
|<ref name="Perfect1" />
|-
|258
|2 x 3 x 43
|3
|1
|1, 2, 3, 6, 43, 86, 129, 258
|<ref name="3one" />
|-
|259
|7 x 37
|2
|1
|1, 7, 37, 259
|<ref name="2one" />
|-
|260
|2 x 2 x 5 x 13
|4
|2
|1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260
|<ref name="1two2one" />
|-
|261
|3 x 3 x 29
|3
|2
|1, 3, 9, 29, 87, 261
|<ref name="1two1one" />
|-
|262
|2 x 131
|2
|1
|1, 2, 131, 262
|<ref name="2one" />
|-
|263
|263
|1
|1
|1, 263
|<ref name="Perfect1" />
|-
|264
|2 x 2 x 2 x 3 x 11
|5
|3
|1, 2, 3, 4, 6, 8, 11, 12, 22, 24, 33, 44, 66, 132, 264
|<ref name=":2" />
|-
|265
|5 x 53
|2
|1
|1, 5, 53, 265
|<ref name="2one" />
|-
|266
|2 x 7 x 19
|3
|1
|1, 2, 7, 14, 19, 38, 113, 266
|<ref name="3one" />
|-
|267
|3 x 89
|2
|1
|1, 3, 89, 267
|<ref name="2one" />
|-
|268
|2 x 2 x 67
|3
|2
|1, 2, 4, 67, 134, 268
|<ref name="1two1one" />
|-
|269
|269
|1
|1
|1, 269
|<ref name="Perfect1" />
|-
|270
|2 x 3 x 3 x 3 x 5
|5
|3
|1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 90, 135, 270
|<ref name=":2" />
|-
|271
|271
|1
|1
|1, 271
|<ref name="Perfect1" />
|-
|272
|2 x 2 x 2 x 2 x 17
|5
|4
|1, 2, 4, 8, 16, 17, 34, 68, 136, 272
|<ref name="1one1four" />
|-
|273
|3 x 7 x 13
|3
|1
|1, 3, 7, 13, 21, 39, 91, 273
|<ref name="3one" />
|-
|274
|2 x 137
|2
|1
|1, 2, 137, 274
|<ref name="2one" />
|-
|275
|5 x 5 x 11
|3
|2
|1, 5, 11, 25, 55, 275
|<ref name="1two1one" />
|-
|276
|2 x 2 x 3 x 23
|4
|2
|1, 2, 3, 4, 6, 12, 23, 46, 69, 92, 138, 276
|<ref name="1two2one" />
|-
|277
|277
|1
|1
|1, 277
|<ref name="Perfect1" />
|-
|278
|2 x 139
|2
|1
|1, 2, 139, 278
|<ref name="2one" />
|-
|279
|3 x 3 x 31
|3
|2
|1, 3, 9, 31, 93, 279
|<ref name="1two1one" />
|-
|280
|2 x 2 x 2 x 5 x 7
|5
|3
|1, 2, 4, 5, 7, 8, 10, 14, 20, 28, 35, 40, 56, 70, 140, 280
|<ref name=":2" />
|-
|281
|281
|1
|1
|
|<ref name="Perfect1" />
|-
|282
|2 x 3 x 47
|3
|1
|
|<ref name="3one" />
|-
|283
|283
|1
|1
|
|<ref name="Perfect1" />
|-
|284
|2 x 2 x 71
|3
|2
|
|<ref name="1two1one" />
|-
|285
|3 x 5 x 19
|3
|1
|
|<ref name="3one" />
|-
|286
|2 x 11 x 13
|3
|1
|
|<ref name="3one" />
|-
|287
|7 x 41
|2
|1
|
|<ref name="2one" />
|-
|288
|2 x 2 x 2 x 2 x 2 x 3 x 3
|7
|5
|
|<ref>One five level and one two level</ref>
|-
|289
|17 x 17
|2
|2
|
|<ref name="Perfect2" />
|-
|290
|2 x 5 x 29
|3
|1
|
|<ref name="3one" />
|-
|291
|3 x 97
|2
|1
|
|<ref name="2one" />
|-
|292
|2 x 2 x 73
|3
|2
|
|<ref name="1two1one" />
|-
|293
|293
|1
|1
|
|<ref name="Perfect1" />
|-
|294
|2 x 3 x 7 x 7
|4
|2
|
|<ref name="1two2one" />
|-
|295
|5 x 59
|2
|1
|
|<ref name="2one" />
|-
|296
|2 x 2 x 2 x 37
|4
|3
|
|<ref name="1three1one" />
|-
|297
|3 x 3 x 3 x 11
|4
|3
|
|<ref name="1three1one" />
|-
|298
|2 x 149
|2
|1
|
|<ref name="2one" />
|-
|299
|13 x 23
|2
|1
|
|<ref name="2one" />
|-
|300
|2 x 2 x 3 x 5 x 5
|5
|2
|
|<ref name=":3" />
|}

=== 301 to 400 ===
{| class="wikitable mw-collapsible mw-collapsed"
!Numbers
!Prime factors
!Numbers
!Level
!List of factors<ref name=":12" />
!Notes
|-
|301
|7 x 43
|2
|1
|
|<ref name="2one" />
|-
|302
|2 x 151
|2
|1
|
|<ref name="2one" />
|-
|303
|3 x 101
|2
|1
|
|<ref name="2one" />
|-
|304
|2 x 2 x 2 x 2 x 19
|5
|4
|
|<ref name="1one1four" />
|-
|305
|5 x 61
|2
|1
|
|<ref name="2one" />
|-
|306
|2 x 3 x 3 x 17
|4
|2
|
|<ref name="1two2one" />
|-
|307
|307
|1
|1
|
|<ref name="Perfect1" />
|-
|308
|2 x 2 x 7 x 11
|4
|2
|
|<ref name="1two2one" />
|-
|309
|3 x 103
|2
|1
|
|<ref name="2one" />
|-
|310
|2 x 5 x 31
|3
|1
|
|<ref name="3one" />
|-
|311
|311
|1
|1
|
|<ref name="Perfect1" />
|-
|312
|2 x 2 x 2 x 3 x 13
|5
|3
|
|<ref name=":2" />
|-
|313
|313
|1
|1
|
|<ref name="Perfect1" />
|-
|314
|2 x 157
|2
|1
|
|<ref name="2one" />
|-
|315
|3 x 3 x 5 x 7
|4
|2
|
|<ref name="1two2one" />
|-
|316
|2 x 2 x 79
|3
|2
|
|<ref name="1two1one" />
|-
|317
|317
|1
|1
|
|<ref name="Perfect1" />
|-
|318
|2 x 3 x 53
|3
|1
|
|<ref name="3one" />
|-
|319
|11 x 29
|2
|1
|
|<ref name="2one" />
|-
|320
|2 x 2 x 2 x 2 x 2 x 2 x 5
|7
|6
|
|<ref name=":4" />
|-
|321
|3 x 107
|2
|1
|
|<ref name="2one" />
|-
|322
|2 x 7 x 23
|3
|1
|
|<ref name="3one" />
|-
|323
|17 x 19
|2
|1
|
|<ref name="2one" />
|-
|324
|2 x 2 x 3 x 3 x 3 x 3
|6
|4
|
|<ref name=":5" />
|-
|325
|5 x 5 x 13
|3
|2
|
|<ref name="1two1one" />
|-
|326
|2 x 163
|2
|1
|
|<ref name="2one" />
|-
|327
|3 x 109
|2
|1
|
|<ref name="2one" />
|-
|328
|2 x 2 x 2 x 41
|4
|3
|
|<ref name="1three1one" />
|-
|329
|7 x 47
|2
|1
|
|<ref name="2one" />
|-
|330
|2 x 3 x 5 x 11
|4
|1
|
|<ref name=":6" />
|-
|331
|331
|1
|1
|
|<ref name="Perfect1" />
|-
|332
|2 x 2 x 83
|3
|2
|
|<ref name="1two1one" />
|-
|333
|3 x 3 x 37
|3
|2
|
|<ref name="1two1one" />
|-
|334
|2 x 167
|2
|1
|
|<ref name="2one" />
|-
|335
|5 x 67
|2
|1
|
|<ref name="2one" />
|-
|336
|2 x 2 x 2 x 2 x 3 x 7
|6
|4
|
|<ref name=":7" />
|-
|337
|337
|1
|1
|
|<ref name="Perfect1" />
|-
|338
|2 x 13 x 13
|3
|2
|
|<ref name="1two1one" />
|-
|339
|3 x 113
|2
|1
|
|<ref name="2one" />
|-
|340
|2 x 2 x 5 x 17
|4
|2
|
|<ref name="1two2one" />
|-
|341
|11 x 31
|2
|1
|
|<ref name="2one" />
|-
|342
|2 x 3 x 3 x 19
|4
|2
|
|<ref name="1two2one" />
|-
|343
|7 x 7 x 7
|3
|3
|
|<ref name="Perfect3" />
|-
|344
|2 x 2 x 2 x 43
|4
|3
|
|<ref name="1three1one" />
|-
|345
|3 x 5 x 23
|3
|1
|
|<ref name="3one" />
|-
|346
|2 x 173
|2
|1
|
|<ref name="2one" />
|-
|347
|347
|1
|1
|
|<ref name="Perfect1" />
|-
|348
|2 x 2 x 3 x 29
|4
|2
|
|<ref name="1two2one" />
|-
|349
|349
|1
|1
|
|<ref name="Perfect1" />
|-
|350
|2 x 5 x 5 x 7
|4
|2
|
|<ref name="1two2one" />
|-
|351
|3 x 3 x 3 x 13
|4
|3
|
|<ref name="1three1one" />
|-
|352
|2 x 2 x 2 x 2 x 2 x 11
|6
|5
|
|<ref name=":1" />
|-
|353
|353
|1
|1
|
|<ref name="Perfect1" />
|-
|354
|2 x 3 x 59
|3
|1
|
|<ref name="3one" />
|-
|355
|5 x 71
|2
|1
|
|<ref name="2one" />
|-
|356
|2 x 2 x 89
|3
|2
|
|<ref name="1two1one" />
|-
|357
|3 x 7 x 17
|3
|1
|
|<ref name="3one" />
|-
|358
|2 x 179
|2
|1
|
|<ref name="2one" />
|-
|359
|359
|1
|1
|
|<ref name="Perfect1" />
|-
|360
|2 x 2 x 2 x 3 x 3 x 5
|6
|3
|
|<ref name=":10">One three level, one two level and one one level</ref>
|-
|361
|19 x 19
|2
|2
|
|<ref name="Perfect2" />
|-
|362
|2 x 181
|2
|1
|
|<ref name="2one" />
|-
|363
|3 x 11 x 11
|3
|2
|
|<ref name="1two1one" />
|-
|364
|2 x 2 x 7 x 13
|4
|2
|
|<ref name="1two2one" />
|-
|365
|5 x 73
|2
|1
|
|<ref name="2one" />
|-
|366
|2 x 3 x 61
|3
|1
|
|<ref name="3one" />
|-
|367
|367
|1
|1
|
|<ref name="Perfect1" />
|-
|368
|2 x 2 x 2 x 2 x 23
|5
|4
|
|<ref name="1one1four" />
|-
|369
|3 x 3 x 41
|3
|2
|
|<ref name="1two1one" />
|-
|370
|2 x 5 x 37
|3
|1
|
|<ref name="3one" />
|-
|371
|7 x 53
|2
|1
|
|<ref name="2one" />
|-
|372
|2 x 2 x 3 x 31
|4
|2
|
|<ref name="1two2one" />
|-
|373
|373
|1
|1
|
|<ref name="Perfect1" />
|-
|374
|2 x 11 x 17
|3
|1
|
|<ref name="3one" />
|-
|375
|3 x 5 x 5 x 5
|4
|3
|
|<ref name="1three1one" />
|-
|376
|2 x 2 x 2 x 47
|4
|3
|
|<ref name="1three1one" />
|-
|377
|13 x 29
|2
|1
|
|<ref name="2one" />
|-
|378
|2 x 3 x 3 x 3 x 7
|5
|3
|
|<ref name=":2" />
|-
|379
|379
|1
|1
|
|<ref name="Perfect1" />
|-
|380
|2 x 2 x 5 x 19
|4
|2
|
|<ref name="1two2one" />
|-
|381
|3 x 127
|2
|1
|
|<ref name="2one" />
|-
|382
|2 x 191
|2
|1
|
|<ref name="2one" />
|-
|383
|383
|1
|1
|
|<ref name="Perfect1" />
|-
|384
|2 x 2 x 2 x 2 x 2 x 2 x 2 x 3
|8
|7
|
|<ref>One seven level and one one level</ref>
|-
|385
|5 x 7 x 11
|3
|1
|
|<ref name="3one" />
|-
|386
|2 x 193
|2
|1
|
|<ref name="2one" />
|-
|387
|3 x 3 x 43
|3
|2
|
|<ref name="1two1one" />
|-
|388
|2 x 2 x 97
|3
|2
|
|<ref name="1two1one" />
|-
|389
|389
|1
|1
|
|<ref name="Perfect1" />
|-
|390
|2 x 3 x 5 x 13
|4
|1
|
|<ref name=":6" />
|-
|391
|17 x 23
|2
|1
|
|<ref name="2one" />
|-
|392
|2 x 2 x 2 x 7 x 7
|5
|3
|
|<ref name=":0" />
|-
|393
|3 x 131
|2
|1
|
|<ref name="2one" />
|-
|394
|2 x 197
|2
|1
|
|<ref name="2one" />
|-
|395
|5 x 79
|2
|1
|
|<ref name="2one" />
|-
|396
|2 x 2 x 3 x 3 x 11
|5
|2
|
|<ref name=":3" />
|-
|397
|397
|1
|1
|
|<ref name="Perfect1" />
|-
|398
|2 x 199
|2
|1
|
|<ref name="2one" />
|-
|399
|3 x 7 x 19
|3
|1
|
|<ref name="3one" />
|-
|400
|2 x 2 x 2 x 2 x 5 x 5
|6
|4
|
|<ref name=":5" />
|}

=== 401 to 500 ===
{| class="wikitable mw-collapsible mw-collapsed"
!Numbers
!Prime factors
!Numbers
!Level
!List of factors<ref name=":12" />
!Notes
|-
|401
|401
|1
|1
|
|<ref name="Perfect1" />
|-
|402
|2 x 3 x 67
|3
|1
|
|<ref name="3one" />
|-
|403
|13 x 31
|2
|1
|
|<ref name="2one" />
|-
|404
|2 x 2 x 101
|3
|2
|
|<ref name="1two1one" />
|-
|405
|3 x 3 x 3 x 3 x 5
|5
|4
|
|<ref name="1one1four" />
|-
|406
|2 x 7 x 29
|3
|1
|
|<ref name="3one" />
|-
|407
|11 x 37
|2
|1
|
|<ref name="2one" />
|-
|408
|2 x 2 x 2 x 3 x 17
|5
|3
|
|<ref name=":2" />
|-
|409
|409
|1
|1
|
|<ref name="Perfect1" />
|-
|410
|2 x 5 x 41
|3
|1
|
|<ref name="3one" />
|-
|411
|3 x 137
|2
|1
|
|<ref name="2one" />
|-
|412
|2 x 2 x 103
|3
|2
|
|<ref name="1two1one" />
|-
|413
|7 x 59
|2
|1
|
|<ref name="2one" />
|-
|414
|2 x 3 x 3 x 23
|4
|2
|
|<ref name="1two2one" />
|-
|415
|5 x 83
|2
|1
|
|<ref name="2one" />
|-
|416
|2 x 2 x 2 x 2 x 2 x 13
|6
|5
|
|<ref name=":1" />
|-
|417
|3 x 139
|2
|1
|
|<ref name="2one" />
|-
|418
|2 x 11 x 19
|3
|1
|
|<ref name="3one" />
|-
|419
|419
|1
|1
|
|<ref name="Perfect1" />
|-
|420
|2 x 2 x 3 x 5 x 7
|5
|2
|
|<ref>One two level and three one level</ref>
|-
|421
|421
|1
|1
|
|<ref name="Perfect1" />
|-
|422
|2 x 211
|2
|1
|
|<ref name="2one" />
|-
|423
|3 x 3 x 47
|3
|2
|
|<ref name="1two1one" />
|-
|424
|2 x 2 x 2 x 53
|4
|3
|
|<ref name="1three1one" />
|-
|425
|5 x 5 x 17
|3
|2
|
|<ref name="1two1one" />
|-
|426
|2 x 3 x 71
|3
|1
|
|<ref name="3one" />
|-
|427
|7 x 61
|2
|1
|
|<ref name="2one" />
|-
|428
|2 x 2 x 107
|3
|2
|
|<ref name="1two1one" />
|-
|429
|3 x 11 x 13
|3
|1
|
|<ref name="3one" />
|-
|430
|2 x 5 x 43
|3
|1
|
|<ref name="3one" />
|-
|431
|431
|1
|1
|
|<ref name="Perfect1" />
|-
|432
|2 x 2 x 2 x 2 x 3 x 3 x 3
|7
|4
|
|<ref>One three level and one four level</ref>
|-
|433
|433
|1
|1
|
|<ref name="Perfect1" />
|-
|434
|2 x 7 x 31
|3
|1
|
|<ref name="3one" />
|-
|435
|3 x 5 x 29
|3
|1
|
|<ref name="3one" />
|-
|436
|2 x 2 x 109
|3
|2
|
|<ref name="1two1one" />
|-
|437
|19 x 23
|2
|1
|
|<ref name="2one" />
|-
|438
|2 x 3 x 73
|3
|1
|
|<ref name="3one" />
|-
|439
|439
|1
|1
|
|<ref name="Perfect1" />
|-
|440
|2 x 2 x 2 x 5 x 11
|5
|3
|
|<ref name=":2" />
|-
|441
|3 x 3 x 7 x 7
|4
|2
|
|<ref name="2two" />
|-
|442
|2 x 13 x 17
|3
|1
|
|<ref name="3one" />
|-
|443
|443
|1
|1
|
|<ref name="Perfect1" />
|-
|444
|2 x 2 x 3 x 37
|4
|2
|
|<ref name="1two2one" />
|-
|445
|5 x 89
|2
|1
|
|<ref name="2one" />
|-
|446
|2 x 223
|2
|1
|
|<ref name="2one" />
|-
|447
|3 x 149
|2
|1
|
|<ref name="2one" />
|-
|448
|2 x 2 x 2 x 2 x 2 x 2 x 7
|7
|6
|
|<ref name=":4" />
|-
|449
|449
|1
|1
|
|<ref name="Perfect1" />
|-
|450
|2 x 3 x 3 x 5 x 5
|5
|2
|
|<ref name=":3" />
|-
|451
|11 x 41
|2
|1
|
|<ref name="2one" />
|-
|452
|2 x 2 x 113
|3
|2
|
|<ref name="1two1one" />
|-
|453
|3 x 151
|2
|1
|
|<ref name="2one" />
|-
|454
|2 x 227
|2
|1
|
|<ref name="2one" />
|-
|455
|5 x 7 x 13
|3
|1
|
|<ref name="3one" />
|-
|456
|2 x 2 x 2 x 3 x 19
|5
|3
|
|<ref name=":2" />
|-
|457
|457
|1
|1
|
|<ref name="Perfect1" />
|-
|458
|2 x 229
|2
|1
|
|<ref name="2one" />
|-
|459
|3 x 3 x 3 x 17
|4
|3
|
|<ref name="1three1one" />
|-
|460
|2 x 2 x 5 x 23
|4
|2
|
|<ref name="1two2one" />
|-
|461
|461
|1
|1
|
|<ref name="Perfect1" />
|-
|462
|2 x 3 x 7 x 11
|4
|1
|
|<ref name=":6" />
|-
|463
|463
|1
|1
|
|<ref name="Perfect1" />
|-
|464
|2 x 2 x 2 x 2 x 29
|5
|4
|
|<ref name="1one1four" />
|-
|465
|3 x 5 x 31
|3
|1
|
|<ref name="3one" />
|-
|466
|2 x 233
|2
|1
|
|<ref name="2one" />
|-
|467
|467
|1
|1
|
|<ref name="Perfect1" />
|-
|468
|2 x 2 x 3 x 3 x 13
|5
|2
|
|<ref name=":3" />
|-
|469
|7 x 67
|2
|1
|
|<ref name="2one" />
|-
|470
|2 x 5 x 47
|3
|1
|
|<ref name="3one" />
|-
|471
|3 x 157
|2
|1
|
|<ref name="2one" />
|-
|472
|2 x 2 x 2 x 59
|4
|3
|
|<ref name="1three1one" />
|-
|473
|11 x 43
|2
|1
|
|<ref name="2one" />
|-
|474
|2 x 3 x 79
|3
|1
|
|<ref name="3one" />
|-
|475
|5 x 5 x 19
|3
|2
|
|<ref name="1two1one" />
|-
|476
|2 x 2 x 7 x 17
|4
|2
|
|<ref name="1two2one" />
|-
|477
|3 x 3 x 53
|3
|2
|
|<ref name="1two1one" />
|-
|478
|2 x 239
|2
|1
|
|<ref name="2one" />
|-
|479
|479
|1
|1
|
|<ref name="Perfect1" />
|-
|480
|2 x 2 x 2 x 2 x 2 x 3 x 5
|7
|5
|
|<ref>One five level and two one level</ref>
|-
|481
|13 x 37
|2
|1
|
|<ref name="2one" />
|-
|482
|2 x 241
|2
|1
|
|<ref name="2one" />
|-
|483
|3 x 7 x 23
|3
|1
|
|<ref name="3one" />
|-
|484
|2 x 2 x 11 x 11
|4
|2
|
|<ref name="2two" />
|-
|485
|5 x 97
|2
|1
|
|<ref name="2one" />
|-
|486
|2 x 3 x 3 x 3 x 3 x 3
|6
|5
|
|<ref name=":1" />
|-
|487
|487
|1
|1
|
|<ref name="Perfect1" />
|-
|488
|2 x 2 x 2 x 61
|4
|3
|
|<ref name="1three1one" />
|-
|489
|3 x 163
|2
|1
|
|<ref name="2one" />
|-
|490
|2 x 5 x 7 x 7
|4
|2
|
|<ref name="1two2one" />
|-
|491
|491
|1
|1
|
|<ref name="Perfect1" />
|-
|492
|2 x 2 x 3 x 41
|4
|2
|
|<ref name="1two2one" />
|-
|493
|17 x 29
|2
|1
|
|<ref name="2one" />
|-
|494
|2 x 13 x 19
|3
|1
|
|<ref name="3one" />
|-
|495
|3 x 3 x 5 x 11
|4
|2
|
|<ref name="1two2one" />
|-
|496
|2 x 2 x 2 x 2 x 31
|5
|4
|
|<ref name="1one1four" />
|-
|497
|7 x 71
|2
|1
|
|<ref name="2one" />
|-
|498
|2 x 3 x 83
|3
|1
|
|<ref name="3one" />
|-
|499
|499
|1
|1
|
|<ref name="Perfect1" />
|-
|500
|2 x 2 x 5 x 5 x 5
|5
|3
|
|<ref name=":0" />
|}

=== 501 to 600 ===
{| class="wikitable mw-collapsible mw-collapsed"
!Numbers
!Prime factors
!Numbers
!Level
!List of factors<ref name=":12" />
!Notes
|-
|501
|3 x 167
|2
|1
|
|<ref name="2one" />
|-
|502
|2 x 251
|2
|1
|
|<ref name="2one" />
|-
|503
|503
|1
|1
|
|<ref name="Perfect1" />
|-
|504
|2 x 2 x 2 x 3 x 3 x 7
|6
|3
|
|<ref name=":10" />
|-
|505
|5 x 101
|2
|1
|
|<ref name="2one" />
|-
|506
|2 x 11 x 23
|3
|1
|
|<ref name="3one" />
|-
|507
|3 x 13 x 13
|3
|2
|
|<ref name="1two1one" />
|-
|508
|2 x 2 x 127
|3
|2
|
|<ref name="1two1one" />
|-
|509
|509
|1
|1
|
|<ref name="Perfect1" />
|-
|510
|2 x 3 x 5 x 17
|4
|1
|
|<ref name=":6" />
|-
|511
|7 x 73
|2
|1
|
|<ref name="2one" />
|-
|512
|2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
|9
|9
|
|<ref>Perfect nine</ref>
|-
|513
|3 x 3 x 3 x 19
|4
|3
|
|<ref name="1three1one" />
|-
|514
|2 x 257
|2
|1
|
|<ref name="2one" />
|-
|515
|5 x 103
|2
|1
|
|<ref name="2one" />
|-
|516
|2 x 2 x 3 x 43
|4
|2
|
|<ref name="1two2one" />
|-
|517
|11 x 47
|2
|1
|
|<ref name="2one" />
|-
|518
|2 x 7 x 37
|3
|1
|
|<ref name="3one" />
|-
|519
|3 x 173
|2
|1
|
|<ref name="2one" />
|-
|520
|2 x 2 x 2 x 5 x 13
|5
|3
|
|<ref name=":2" />
|-
|521
|521
|1
|1
|
|<ref name="Perfect1" />
|-
|522
|2 x 3 x 3 x 29
|4
|2
|
|<ref name="1two2one" />
|-
|523
|523
|1
|1
|
|<ref name="Perfect1" />
|-
|524
|2 x 2 x 131
|3
|2
|
|<ref name="1two1one" />
|-
|525
|3 x 5 x 5 x 7
|4
|2
|
|<ref name="1two2one" />
|-
|526
|2 x 263
|2
|1
|
|<ref name="2one" />
|-
|527
|17 x 31
|2
|1
|
|<ref name="2one" />
|-
|528
|2 x 2 x 2 x 2 x 3 x 11
|6
|4
|
|<ref name=":7" />
|-
|529
|23 x 23
|2
|2
|
|<ref name="Perfect2" />
|-
|530
|2 x 5 x 53
|3
|1
|
|<ref name="3one" />
|-
|531
|3 x 3 x 59
|3
|2
|
|<ref name="1two1one" />
|-
|532
|2 x 2 x 7 x 19
|4
|2
|
|<ref name="1two2one" />
|-
|533
|13 x 41
|2
|1
|
|<ref name="2one" />
|-
|534
|2 x 3 x 89
|3
|1
|
|<ref name="3one" />
|-
|535
|5 x 107
|2
|1
|
|<ref name="2one" />
|-
|536
|2 x 2 x 2 x 67
|4
|3
|
|<ref name="1three1one" />
|-
|537
|3 x 179
|2
|1
|
|<ref name="2one" />
|-
|538
|2 x 269
|2
|1
|
|<ref name="2one" />
|-
|539
|7 x 7 x 11
|3
|2
|
|<ref name="1two1one" />
|-
|540
|2 x 2 x 3 x 3 x 3 x 5
|6
|3
|
|<ref name=":10" />
|-
|541
|541
|1
|1
|
|<ref name="Perfect1" />
|-
|542
|2 x 271
|2
|1
|
|<ref name="2one" />
|-
|543
|3 x 181
|2
|1
|
|<ref name="2one" />
|-
|544
|2 x 2 x 2 x 2 x 2 x 17
|6
|5
|
|<ref name=":1" />
|-
|545
|5 x 109
|2
|1
|
|<ref name="2one" />
|-
|546
|2 x 3 x 7 x 13
|4
|1
|
|<ref name=":6" />
|-
|547
|547
|1
|1
|
|<ref name="Perfect1" />
|-
|548
|2 x 2 x 137
|3
|2
|
|<ref name="1two1one" />
|-
|549
|3 x 3 x 61
|3
|2
|
|<ref name="1two1one" />
|-
|550
|2 x 5 x 5 x 11
|4
|2
|
|<ref name="1two2one" />
|-
|551
|19 x 29
|2
|1
|
|<ref name="2one" />
|-
|552
|2 x 2 x 2 x 3 x 23
|5
|3
|
|<ref name=":2" />
|-
|553
|7 x 79
|2
|1
|
|<ref name="2one" />
|-
|554
|2 x 277
|2
|1
|
|<ref name="2one" />
|-
|555
|3 x 5 x 37
|3
|1
|
|<ref name="3one" />
|-
|556
|2 x 2 x 139
|3
|2
|
|<ref name="1two1one" />
|-
|557
|557
|1
|1
|
|<ref name="Perfect1" />
|-
|558
|2 x 3 x 3 x 31
|4
|2
|
|<ref name="1two2one" />
|-
|559
|13 x 43
|2
|1
|
|<ref name="2one" />
|-
|560
|2 x 2 x 2 x 2 x 5 x 7
|6
|4
|
|<ref name=":7" />
|}

==References==
<references />