Revision 482092 of "Numbers" on testwiki[[File:Bicycle_evolution-numbers.svg|link=https://en.wikipedia.org/wiki/File:Bicycle_evolution-numbers.svg|thumb|The bicycle which is numbered [[1]], [[2]], [[3]], [[4]], [[5]], [[6]], [[7]] to display the old and the new of the bicycles.]]
This page is the list of numbers with prime factors and levels.
Note before reading this page: Numbers is the number of prime number prevention in the prime factors, and the level is the most base of the number in the prime factors.<ref>When in the docs page it will show a bunch of references.</ref> Seeing the introduction of notes: Click on the notes on the note column, you will see the defintion of numbers describing on the row. In the references section, click on the name references to see the (number)-smallest number has this defintion.<ref>See: [[Main Page]] to see whatever cites looks.</ref> For the example, click on the citation 7-24 (prime number citation), you will show the 24th prime number (note that the smallest number has 0 starting) and the 24th prime number is 97 (note that the 0 prime number is 2). You will also see the [[OEIS]] index of the list of number after clicking the ref.<ref>Note that: All of the list in OEIS are only shows a few number of first element, so should use this page.</ref> For a complete list of starting 0 references we use in the page, see [[oeis:A025487|A025487]] (OEIS) and the prime signature level [[oeis:A124832|A124832]].
There are two references for each numbers, the first are numbers on the manot (the type of prime signature), and a second references determines that what number in the section. Where the manot is, the templates that.<ref>On that's exampleity.</ref>
== Note when using references section ==
Using the list of references to determine the lists of numbers, but prime number (citation 7) is a sequence {{nowrap|[[OEIS:A000040|A000040]]}} in the [[On-Line Encyclopedia of Integer Sequences|OEIS]] is seen on [[User:Thingofme/sandbox/A000040|this page]]. When seeing the references, a list-defined references will listing above. Note that:
* The list only see the numbers, not see the prime factors.<ref>Note that all prime factors are used in an optical way.</ref> If you want to see it, you should use this page.
* 1 is not a prime number, not a composite, but it appears in OEIS.<ref name=":8">Not a prime and no level</ref><ref>One is a smallest number, so it comes first.</ref>
* In A025487, all the starting is an even number, so odd numbers be appear different.
* On prime number dictionary (citation 7), all the numbers are odd, except 2.<ref name=":0">That's ok because even numbers are divisible by 2.</ref>
* We can click on the integers to see the varity of numbers.
* There are many integers, so we can't make enough numbers to use on this page. So it is always incomplete.
*2 is a smallest prime number, and it's the only even prime numbers.<ref name=":0" /><ref name=":1">Information about numbers, p. 3</ref>
*4 is a smallest composite number.<ref name=":1" />
*6 is a smallest composite which is not squares.<ref name=":1" /><ref name=":2">Note that square are unique.</ref>
*9 is a smallest odd composite number.<ref name=":1" />
*15 is a smallest odd composite which is not squares.<ref name=":1" /><ref name=":2" />
*2(n) is an smallest and only even number in their signatures.<ref>Use that right signature!</ref>
Now, go around!
Also, we can use [[oeis:A046523|A046523]] (OEIS) to choose the number rightly outside the name, but we can find it on this page easily though the references.<ref>{{Cite web|url=https://oeis.org/A046523|title=A046523 - OEIS|website=oeis.org|access-date=2020-03-16}}</ref> We are also create references for easier going for the posibities for level index of numbers, for easier for seeing the OEIS index (we will update later, and something we can't have!...
[[User:Thingofme/sandbox/Numbers#References|''Scroll down to references section'']]
== List of numbers from 1 to 1000 ==
=== 1 to 100 ===
{| class="wikitable mw-collapsible mw-collapsed"
!Numbers
!Prime factors
!Numbers
!Level
|-
|1
|<math>1</math>
|1
|0
|-
|2
|<math>2</math>
|1
|1
|-
|3
|<math>3</math>
|1
|1
|-
|4
|<math>2^2</math>
|2
|2
|-
|5
|<math>5</math>
|1
|1
|-
|6
|<math>2 * 3</math>
|2
|1
|-
|7
|<math>7</math>
|1
|1
|-
|8
|<math>2^3</math>
|3
|3
|-
|9
|<math>3^2</math>
|2
|2
|-
|10
|<math>2 * 5</math>
|2
|1
|-
|11
|<math>11</math>
|1
|1
|-
|12
|<math>2^2 * 3</math>
|3
|2
|-
|13
|<math>13</math>
|1
|1
|-
|14
|<math>2 * 7</math>
|2
|1
|-
|15
|<math>3 * 5</math>
|2
|1
|-
|16
|<math>2^4</math>
|4
|4
|-
|17
|<math>17</math>
|1
|1
|-
|18
|<math>2 * 3^2</math>
|3
|2
|-
|19
|<math>19</math>
|1
|1
|-
|20
|<math>2^2 * 5</math>
|3
|2
|-
|21
|<math>3 * 7</math>
|2
|1
|-
|22
|<math>2 * 11</math>
|2
|1
|-
|23
|<math>23</math>
|1
|1
|-
|24
|<math>2^3 * 3</math>
|4
|3
|-
|25
|<math>5^2</math>
|2
|2
|-
|26
|2 x 13
|2
|1
|-
|27
|3 x 3 x 3
|3
|3
|-
|28
|2 x 2 x 7
|3
|2
|-
|29
|29
|1
|1
|-
|30
|2 x 3 x 5
|3
|1
|-
|31
|31
|1
|1
|-
|32
|2 x 2 x 2 x 2 x 2
|5
|5
|-
|33
|3 x 11
|2
|1
|-
|34
|2 x 17
|2
|1
|-
|35
|5 x 7
|2
|1
|-
|36
|2 x 2 x 3 x 3
|4
|2
|-
|37
|37
|1
|1
|-
|38
|2 x 19
|2
|1
|-
|39
|3 x 13
|2
|1
|-
|40
|2 x 2 x 2 x 5
|4
|3
|-
|41
|41
|1
|1
|-
|42
|2 x 3 x 7
|3
|1
|-
|43
|43
|1
|1
|-
|44
|2 x 2 x 11
|3
|2
|-
|45
|3 x 3 x 5
|3
|2
|-
|46
|2 x 23
|2
|1
|-
|47
|47
|1
|1
|-
|48
|2 x 2 x 2 x 2 x 3
|5
|4
|-
|49
|7 x 7
|2
|2
|-
|50
|2 x 5 x 5
|3
|2
|-
|51
|3 x 17
|2
|1
|-
|52
|2 x 2 x 13
|3
|2
|-
|53
|53
|1
|1
|-
|54
|2 x 3 x 3 x 3
|4
|3
|-
|55
|5 x 11
|2
|1
|-
|56
|2 x 2 x 2 x 7
|4
|3
|-
|57
|3 x 19
|2
|1
|-
|58
|2 x 29
|2
|1
|-
|59
|59
|1
|1
|-
|60
|2 x 2 x 3 x 5
|4
|2
|-
|61
|61
|1
|1
|-
|62
|2 x 31
|2
|1
|-
|63
|3 x 3 x 7
|3
|2
|-
|64
|2 x 2 x 2 x 2 x 2 x 2
|6
|1
|-
|65
|5 x 13
|2
|1
|-
|66
|2 x 3 x 11
|3
|1
|-
|67
|67
|1
|1
|-
|68
|2 x 2 x 17
|3
|2
|-
|69
|3 x 23
|2
|1
|-
|70
|2 x 5 x 7
|3
|1
|-
|71
|71
|1
|1
|-
|72
|2 x 2 x 2 x 3 x 3
|5
|2
|-
|73
|73
|1
|1
|-
|74
|2 x 37
|2
|1
|-
|75
|3 x 5 x 5
|3
|2
|-
|76
|2 x 2 x 19
|3
|2
|-
|77
|7 x 11
|2
|1
|-
|78
|2 x 3 x 13
|3
|1
|-
|79
|79
|1
|1
|-
|80
|2 x 2 x 2 x 2 x 5
|5
|4
|-
|81
|3 x 3 x 3 x 3
|4
|4
|-
|82
|2 x 41
|2
|1
|-
|83
|83
|1
|1
|-
|84
|2 x 2 x 3 x 7
|4
|2
|-
|85
|5 x 17
|2
|1
|-
|86
|2 x 43
|2
|1
|-
|87
|3 x 29
|2
|1
|-
|88
|2 x 2 x 2 x 11
|4
|3
|-
|89
|89
|1
|1
|-
|90
|2 x 3 x 3 x 5
|4
|2
|-
|91
|7 x 13
|2
|1
|-
|92
|2 x 2 x 23
|3
|2
|-
|93
|3 x 31
|2
|1
|-
|94
|2 x 47
|2
|1
|-
|95
|5 x 19
|2
|1
|-
|96
|2 x 2 x 2 x 2 x 2 x 3
|6
|5
|-
|97
|97
|1
|1
|-
|98
|2 x 7 x 7
|3
|2
|-
|99
|3 x 3 x 11
|3
|2
|-
|100
|2 x 2 x 5 x 5
|4
|2
|}
=== 101 to 200 ===
{| class="wikitable mw-collapsible mw-collapsed"
!Numbers
!Prime factors
!Numbers
!Level
|-
|101
|101
|1
|1
|-
|102
|2 x 3 x 17
|3
|1
|-
|103
|103
|1
|1
|-
|104
|2 x 2 x 2 x 13
|4
|3
|-
|105
|3 x 5 x 7
|3
|1
|-
|106
|2 x 53
|2
|1
|-
|107
|107
|1
|1
|-
|108
|2 x 2 x 3 x 3 x 3
|5
|2
|-
|109
|109
|1
|1
|-
|110
|2 x 5 x 11
|3
|1
|-
|111
|3 x 37
|2
|1
|-
|112
|2 x 2 x 2 x 2 x 7
|5
|4
|-
|113
|113
|1
|1
|-
|114
|2 x 3 x 19
|3
|1
|-
|115
|5 x 23
|2
|1
|-
|116
|2 x 2 x 29
|3
|2
|-
|117
|3 x 3 x 13
|3
|2
|-
|118
|2 x 59
|2
|1
|-
|119
|7 x 17
|1
|1
|-
|120
|2 x 2 x 2 x 3 x 5
|5
|3
|-
|121
|11 x 11
|2
|2
|-
|122
|2 x 61
|2
|1
|-
|123
|3 x 41
|2
|1
|-
|124
|2 x 2 x 31
|3
|2
|-
|125
|5 x 5 x 5
|3
|3
|-
|126
|2 x 3 x 3 x 7
|4
|2
|-
|127
|127
|1
|1
|-
|128
|2 x 2 x 2 x 2 x 2 x 2 x 2
|7
|7
|-
|129
|3 x 43
|2
|1
|-
|130
|2 x 5 x 13
|3
|1
|-
|131
|131
|1
|1
|-
|132
|2 x 2 x 3 x 11
|4
|2
|-
|133
|7 x 19
|2
|1
|-
|134
|2 x 67
|2
|1
|-
|135
|3 x 3 x 3 x 5
|4
|3
|-
|136
|2 x 2 x 2 x 17
|4
|3
|-
|137
|137
|1
|1
|-
|138
|2 x 3 x 23
|3
|1
|-
|139
|139
|1
|1
|-
|140
|2 x 2 x 5 x 7
|4
|2
|-
|141
|3 x 47
|2
|1
|-
|142
|2 x 71
|2
|1
|-
|143
|11 x 13
|2
|1
|-
|144
|2 x 2 x 2 x 2 x 3 x 3
|6
|4
|-
|145
|5 x 29
|2
|1
|-
|146
|2 x 73
|2
|1
|-
|147
|3 x 7 x 7
|3
|2
|-
|148
|2 x 2 x 37
|3
|2
|-
|149
|149
|1
|1
|-
|150
|2 x 3 x 5 x 5
|4
|2
|-
|151
|151
|1
|1
|-
|152
|2 x 2 x 2 x 19
|4
|3
|-
|153
|3 x 3 x 17
|3
|2
|-
|154
|2 x 7 x 11
|3
|1
|-
|155
|5 x 31
|2
|1
|-
|156
|2 x 2 x 3 x 13
|4
|2
|-
|157
|157
|1
|1
|-
|158
|2 x 79
|2
|1
|-
|159
|3 x 53
|2
|1
|-
|160
|2 x 2 x 2 x 2 x 2 x 5
|6
|5
|-
|161
|7 x 23
|2
|1
|-
|162
|2 x 3 x 3 x 3 x 3
|5
|4
|-
|163
|163
|1
|1
|-
|164
|2 x 2 x 41
|3
|2
|-
|165
|3 x 5 x 11
|3
|1
|-
|166
|2 x 83
|2
|1
|-
|167
|167
|1
|1
|-
|168
|2 x 2 x 2 x 3 x 7
|5
|3
|-
|169
|13 x 13
|2
|2
|-
|170
|2 x 5 x 17
|3
|1
|-
|171
|3 x 3 x 19
|3
|2
|-
|172
|2 x 2 x 43
|3
|2
|-
|173
|173
|1
|1
|-
|174
|2 x 3 x 29
|3
|1
|-
|175
|5 x 5 x 7
|3
|2
|-
|176
|2 x 2 x 2 x 2 x 11
|5
|4
|-
|177
|3 x 59
|2
|1
|-
|178
|2 x 89
|2
|1
|-
|179
|179
|1
|1
|-
|180
|2 x 2 x 3 x 3 x 5
|5
|2
|-
|181
|181
|1
|1
|-
|182
|2 x 7 x 13
|3
|1
|-
|183
|3 x 61
|2
|1
|-
|184
|2 x 2 x 2 x 23
|4
|3
|-
|185
|5 x 37
|2
|1
|-
|186
|2 x 3 x 31
|3
|1
|-
|187
|11 x 17
|2
|1
|-
|188
|2 x 2 x 47
|3
|2
|-
|189
|3 x 3 x 3 x 7
|4
|3
|-
|190
|2 x 5 x 19
|3
|1
|-
|191
|191
|1
|1
|-
|192
|2 x 2 x 2 x 2 x 2 x 2 x 3
|7
|6
|-
|193
|193
|1
|1
|-
|194
|2 x 97
|2
|1
|-
|195
|3 x 5 x 13
|3
|1
|-
|196
|2 x 2 x 7 x 7
|4
|2
|-
|197
|197
|1
|1
|-
|198
|2 x 3 x 3 x 11
|4
|2
|-
|199
|199
|1
|1
|-
|200
|2 x 2 x 2 x 5 x 5
|5
|3
|}
=== 201 to 300 ===
{| class="wikitable mw-collapsible mw-collapsed"
!Numbers
!Prime factors
!Numbers
!Level
|-
|201
|3 x 67
|2
|1
|-
|202
|2 x 101
|2
|1
|-
|203
|7 x 29
|2
|1
|-
|204
|2 x 2 x 3 x 17
|4
|2
|-
|205
|5 x 41
|2
|1
|-
|206
|2 x 103
|2
|1
|-
|207
|3 x 3 x 23
|3
|2
|-
|208
|2 x 2 x 2 x 2 x 13
|5
|4
|-
|209
|11 x 19
|2
|1
|-
|210
|2 x 3 x 5 x 7
|4
|1
|-
|211
|211
|1
|1
|-
|212
|2 x 2 x 53
|3
|2
|-
|213
|3 x 71
|2
|1
|-
|214
|2 x 107
|2
|1
|-
|215
|5 x 43
|2
|1
|-
|216
|2 x 2 x 2 x 3 x 3 x 3
|6
|3
|-
|217
|7 x 31
|2
|1
|-
|218
|2 x 109
|2
|1
|-
|219
|3 x 73
|2
|1
|-
|220
|2 x 2 x 5 x 11
|4
|2
|-
|221
|13 x 17
|2
|1
|-
|222
|2 x 3 x 37
|3
|1
|-
|223
|223
|1
|1
|-
|224
|2 x 2 x 2 x 2 x 2 x 7
|6
|5
|-
|225
|3 x 3 x 5 x 5
|4
|2
|-
|226
|2 x 113
|2
|1
|-
|227
|227
|1
|1
|-
|228
|2 x 2 x 3 x 19
|4
|2
|-
|229
|229
|1
|1
|-
|230
|2 x 5 x 23
|3
|1
|-
|231
|3 x 7 x 11
|3
|1
|-
|232
|2 x 2 x 2 x 29
|4
|3
|-
|233
|233
|1
|1
|-
|234
|2 x 3 x 3 x 13
|4
|2
|-
|235
|5 x 47
|2
|1
|-
|236
|2 x 2 x 59
|3
|2
|-
|237
|3 x 79
|2
|1
|-
|238
|2 x 7 x 17
|3
|1
|-
|239
|239
|1
|1
|-
|240
|2 x 2 x 2 x 2 x 3 x 5
|6
|4
|-
|241
|241
|1
|1
|-
|242
|2 x 11 x 11
|3
|2
|-
|243
|3 x 3 x 3 x 3 x 3
|5
|5
|-
|244
|2 x 2 x 61
|3
|2
|-
|245
|5 x 7 x 7
|3
|2
|-
|246
|2 x 3 x 41
|3
|1
|-
|247
|13 x 19
|2
|1
|-
|248
|2 x 2 x 2 x 31
|4
|3
|-
|249
|3 x 83
|2
|1
|-
|250
|2 x 5 x 5 x 5
|4
|3
|-
|251
|251
|1
|1
|-
|252
|2 x 2 x 3 x 3 x 7
|5
|2
|-
|253
|11 x 23
|2
|1
|-
|254
|2 x 127
|2
|1
|-
|255
|3 x 5 x 17
|3
|1
|-
|256
|2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
|8
|8
|-
|257
|257
|1
|1
|-
|258
|2 x 3 x 43
|3
|1
|-
|259
|7 x 37
|2
|1
|-
|260
|2 x 2 x 5 x 13
|4
|2
|-
|261
|3 x 3 x 29
|3
|2
|-
|262
|2 x 131
|2
|1
|-
|263
|263
|1
|1
|-
|264
|2 x 2 x 2 x 3 x 11
|5
|3
|-
|265
|5 x 53
|2
|1
|-
|266
|2 x 7 x 19
|3
|1
|-
|267
|3 x 89
|2
|1
|-
|268
|2 x 2 x 67
|3
|2
|-
|269
|269
|1
|1
|-
|270
|2 x 3 x 3 x 3 x 5
|5
|3
|-
|271
|271
|1
|1
|-
|272
|2 x 2 x 2 x 2 x 17
|5
|4
|-
|273
|3 x 7 x 13
|3
|1
|-
|274
|2 x 137
|2
|1
|-
|275
|5 x 5 x 11
|3
|2
|-
|276
|2 x 2 x 3 x 23
|4
|2
|-
|277
|277
|1
|1
|-
|278
|2 x 139
|2
|1
|-
|279
|3 x 3 x 31
|3
|2
|-
|280
|2 x 2 x 2 x 5 x 7
|5
|3
|-
|281
|281
|1
|1
|-
|282
|2 x 3 x 47
|3
|1
|-
|283
|283
|1
|1
|-
|284
|2 x 2 x 71
|3
|2
|-
|285
|3 x 5 x 19
|3
|1
|-
|286
|2 x 11 x 13
|3
|1
|-
|287
|7 x 41
|2
|1
|-
|288
|2 x 2 x 2 x 2 x 2 x 3 x 3
|7
|5
|-
|289
|17 x 17
|2
|2
|-
|290
|2 x 5 x 29
|3
|1
|-
|291
|3 x 97
|2
|1
|-
|292
|2 x 2 x 73
|3
|2
|-
|293
|293
|1
|1
|-
|294
|2 x 3 x 7 x 7
|4
|2
|-
|295
|5 x 59
|2
|1
|-
|296
|2 x 2 x 2 x 37
|4
|3
|-
|297
|3 x 3 x 3 x 11
|4
|3
|-
|298
|2 x 149
|2
|1
|-
|299
|13 x 23
|2
|1
|-
|300
|2 x 2 x 3 x 5 x 5
|5
|2
|}
=== 301 to 400 ===
{| class="wikitable mw-collapsible mw-collapsed"
!Numbers
!Prime factors
!Numbers
!Level
|-
|301
|7 x 43
|2
|1
|-
|302
|2 x 151
|2
|1
|-
|303
|3 x 101
|2
|1
|-
|304
|2 x 2 x 2 x 2 x 19
|5
|4
|-
|305
|5 x 61
|2
|1
|-
|306
|2 x 3 x 3 x 17
|4
|2
|-
|307
|307
|1
|1
|-
|308
|2 x 2 x 7 x 11
|4
|2
|-
|309
|3 x 103
|2
|1
|-
|310
|2 x 5 x 31
|3
|1
|-
|311
|311
|1
|1
|-
|312
|2 x 2 x 2 x 3 x 13
|5
|3
|-
|313
|313
|1
|1
|-
|314
|2 x 157
|2
|1
|-
|315
|3 x 3 x 5 x 7
|4
|2
|-
|316
|2 x 2 x 79
|3
|2
|-
|317
|317
|1
|1
|-
|318
|2 x 3 x 53
|3
|1
|-
|319
|11 x 29
|2
|1
|-
|320
|2 x 2 x 2 x 2 x 2 x 2 x 5
|7
|6
|-
|321
|3 x 107
|2
|1
|-
|322
|2 x 7 x 23
|3
|1
|-
|323
|17 x 19
|2
|1
|-
|324
|2 x 2 x 3 x 3 x 3 x 3
|6
|4
|-
|325
|5 x 5 x 13
|3
|2
|-
|326
|2 x 163
|2
|1
|-
|327
|3 x 109
|2
|1
|-
|328
|2 x 2 x 2 x 41
|4
|3
|-
|329
|7 x 47
|2
|1
|-
|330
|2 x 3 x 5 x 11
|4
|1
|-
|331
|331
|1
|1
|-
|332
|2 x 2 x 83
|3
|2
|-
|333
|3 x 3 x 37
|3
|2
|-
|334
|2 x 167
|2
|1
|-
|335
|5 x 67
|2
|1
|-
|336
|2 x 2 x 2 x 2 x 3 x 7
|6
|4
|-
|337
|337
|1
|1
|-
|338
|2 x 13 x 13
|3
|2
|-
|339
|3 x 113
|2
|1
|-
|340
|2 x 2 x 5 x 17
|4
|2
|-
|341
|11 x 31
|2
|1
|-
|342
|2 x 3 x 3 x 19
|4
|2
|-
|343
|7 x 7 x 7
|3
|3
|-
|344
|2 x 2 x 2 x 43
|4
|3
|-
|345
|3 x 5 x 23
|3
|1
|-
|346
|2 x 173
|2
|1
|-
|347
|347
|1
|1
|-
|348
|2 x 2 x 3 x 29
|4
|2
|-
|349
|349
|1
|1
|-
|350
|2 x 5 x 5 x 7
|4
|2
|-
|351
|3 x 3 x 3 x 13
|4
|3
|-
|352
|2 x 2 x 2 x 2 x 2 x 11
|6
|5
|-
|353
|353
|1
|1
|-
|354
|2 x 3 x 59
|3
|1
|-
|355
|5 x 71
|2
|1
|-
|356
|2 x 2 x 89
|3
|2
|-
|357
|3 x 7 x 17
|3
|1
|-
|358
|2 x 179
|2
|1
|-
|359
|359
|1
|1
|-
|360
|2 x 2 x 2 x 3 x 3 x 5
|6
|3
|-
|361
|19 x 19
|2
|2
|-
|362
|2 x 181
|2
|1
|-
|363
|3 x 11 x 11
|3
|2
|-
|364
|2 x 2 x 7 x 13
|4
|2
|-
|365
|5 x 73
|2
|1
|-
|366
|2 x 3 x 61
|3
|1
|-
|367
|367
|1
|1
|-
|368
|2 x 2 x 2 x 2 x 23
|5
|4
|-
|369
|3 x 3 x 41
|3
|2
|-
|370
|2 x 5 x 37
|3
|1
|-
|371
|7 x 53
|2
|1
|-
|372
|2 x 2 x 3 x 31
|4
|2
|-
|373
|373
|1
|1
|-
|374
|2 x 11 x 17
|3
|1
|-
|375
|3 x 5 x 5 x 5
|4
|3
|-
|376
|2 x 2 x 2 x 47
|4
|3
|-
|377
|13 x 29
|2
|1
|-
|378
|2 x 3 x 3 x 3 x 7
|5
|3
|-
|379
|379
|1
|1
|-
|380
|2 x 2 x 5 x 19
|4
|2
|-
|381
|3 x 127
|2
|1
|-
|382
|2 x 191
|2
|1
|-
|383
|383
|1
|1
|-
|384
|2 x 2 x 2 x 2 x 2 x 2 x 2 x 3
|8
|7
|-
|385
|5 x 7 x 11
|3
|1
|-
|386
|2 x 193
|2
|1
|-
|387
|3 x 3 x 43
|3
|2
|-
|388
|2 x 2 x 97
|3
|2
|-
|389
|389
|1
|1
|-
|390
|2 x 3 x 5 x 13
|4
|1
|-
|391
|17 x 23
|2
|1
|-
|392
|2 x 2 x 2 x 7 x 7
|5
|3
|-
|393
|3 x 131
|2
|1
|-
|394
|2 x 197
|2
|1
|-
|395
|5 x 79
|2
|1
|-
|396
|2 x 2 x 3 x 3 x 11
|5
|2
|-
|397
|397
|1
|1
|-
|398
|2 x 199
|2
|1
|-
|399
|3 x 7 x 19
|3
|1
|-
|400
|2 x 2 x 2 x 2 x 5 x 5
|6
|4
|}
=== 401 to 500 ===
{| class="wikitable mw-collapsible mw-collapsed"
!Numbers
!Prime factors
!Numbers
!Level
|-
|401
|401
|1
|1
|-
|402
|2 x 3 x 67
|3
|1
|-
|403
|13 x 31
|2
|1
|-
|404
|2 x 2 x 101
|3
|2
|-
|405
|3 x 3 x 3 x 3 x 5
|5
|4
|-
|406
|2 x 7 x 29
|3
|1
|-
|407
|11 x 37
|2
|1
|-
|408
|2 x 2 x 2 x 3 x 17
|5
|3
|-
|409
|409
|1
|1
|-
|410
|2 x 5 x 41
|3
|1
|-
|411
|3 x 137
|2
|1
|-
|412
|2 x 2 x 103
|3
|2
|-
|413
|7 x 59
|2
|1
|-
|414
|2 x 3 x 3 x 23
|4
|2
|-
|415
|5 x 83
|2
|1
|-
|416
|2 x 2 x 2 x 2 x 2 x 13
|6
|5
|-
|417
|3 x 139
|2
|1
|-
|418
|2 x 11 x 19
|3
|1
|-
|419
|419
|1
|1
|-
|420
|2 x 2 x 3 x 5 x 7
|5
|2
|-
|421
|421
|1
|1
|-
|422
|2 x 211
|2
|1
|-
|423
|3 x 3 x 47
|3
|2
|-
|424
|2 x 2 x 2 x 53
|4
|3
|-
|425
|5 x 5 x 17
|3
|2
|-
|426
|2 x 3 x 71
|3
|1
|-
|427
|7 x 61
|2
|1
|-
|428
|2 x 2 x 107
|3
|2
|-
|429
|3 x 11 x 13
|3
|1
|-
|430
|2 x 5 x 43
|3
|1
|-
|431
|431
|1
|1
|-
|432
|2 x 2 x 2 x 2 x 3 x 3 x 3
|7
|4
|-
|433
|433
|1
|1
|-
|434
|2 x 7 x 31
|3
|1
|-
|435
|3 x 5 x 29
|3
|1
|-
|436
|2 x 2 x 109
|3
|2
|-
|437
|19 x 23
|2
|1
|-
|438
|2 x 3 x 73
|3
|1
|-
|439
|439
|1
|1
|-
|440
|2 x 2 x 2 x 5 x 11
|5
|3
|-
|441
|3 x 3 x 7 x 7
|4
|2
|-
|442
|2 x 13 x 17
|3
|1
|-
|443
|443
|1
|1
|-
|444
|2 x 2 x 3 x 37
|4
|2
|-
|445
|5 x 89
|2
|1
|-
|446
|2 x 223
|2
|1
|-
|447
|3 x 149
|2
|1
|-
|448
|2 x 2 x 2 x 2 x 2 x 2 x 7
|7
|6
|-
|449
|449
|1
|1
|-
|450
|2 x 3 x 3 x 5 x 5
|5
|2
|-
|451
|11 x 41
|2
|1
|-
|452
|2 x 2 x 113
|3
|2
|-
|453
|3 x 151
|2
|1
|-
|454
|2 x 227
|2
|1
|-
|455
|5 x 7 x 13
|3
|1
|-
|456
|2 x 2 x 2 x 3 x 19
|5
|3
|-
|457
|457
|1
|1
|-
|458
|2 x 229
|2
|1
|-
|459
|3 x 3 x 3 x 17
|4
|3
|-
|460
|2 x 2 x 5 x 23
|4
|2
|-
|461
|461
|1
|1
|-
|462
|2 x 3 x 7 x 11
|4
|1
|-
|463
|463
|1
|1
|-
|464
|2 x 2 x 2 x 2 x 29
|5
|4
|-
|465
|3 x 5 x 31
|3
|1
|-
|466
|2 x 233
|2
|1
|-
|467
|467
|1
|1
|-
|468
|2 x 2 x 3 x 3 x 13
|5
|2
|-
|469
|7 x 67
|2
|1
|-
|470
|2 x 5 x 47
|3
|1
|-
|471
|3 x 157
|2
|1
|-
|472
|2 x 2 x 2 x 59
|4
|3
|-
|473
|11 x 43
|2
|1
|-
|474
|2 x 3 x 79
|3
|1
|-
|475
|5 x 5 x 19
|3
|2
|-
|476
|2 x 2 x 7 x 17
|4
|2
|-
|477
|3 x 3 x 53
|3
|2
|-
|478
|2 x 239
|2
|1
|-
|479
|479
|1
|1
|-
|480
|2 x 2 x 2 x 2 x 2 x 3 x 5
|7
|5
|-
|481
|13 x 37
|2
|1
|-
|482
|2 x 241
|2
|1
|-
|483
|3 x 7 x 23
|3
|1
|-
|484
|2 x 2 x 11 x 11
|4
|2
|-
|485
|5 x 97
|2
|1
|-
|486
|2 x 3 x 3 x 3 x 3 x 3
|6
|5
|-
|487
|487
|1
|1
|-
|488
|2 x 2 x 2 x 61
|4
|3
|-
|489
|3 x 163
|2
|1
|-
|490
|2 x 5 x 7 x 7
|4
|2
|-
|491
|491
|1
|1
|-
|492
|2 x 2 x 3 x 41
|4
|2
|-
|493
|17 x 29
|2
|1
|-
|494
|2 x 13 x 19
|3
|1
|-
|495
|3 x 3 x 5 x 11
|4
|2
|-
|496
|2 x 2 x 2 x 2 x 31
|5
|4
|-
|497
|7 x 71
|2
|1
|-
|498
|2 x 3 x 83
|3
|1
|-
|499
|499
|1
|1
|-
|500
|2 x 2 x 5 x 5 x 5
|5
|3
|}
=== 501 to 600 ===
{| class="wikitable mw-collapsible mw-collapsed"
!Numbers
!Prime factors
!Numbers
!Level
|-
|501
|3 x 167
|2
|1
|-
|502
|2 x 251
|2
|1
|-
|503
|503
|1
|1
|-
|504
|2 x 2 x 2 x 3 x 3 x 7
|6
|3
|-
|505
|5 x 101
|2
|1
|-
|506
|2 x 11 x 23
|3
|1
|-
|507
|3 x 13 x 13
|3
|2
|-
|508
|2 x 2 x 127
|3
|2
|-
|509
|509
|1
|1
|-
|510
|2 x 3 x 5 x 17
|4
|1
|-
|511
|7 x 73
|2
|1
|-
|512
|2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
|9
|9
|-
|513
|3 x 3 x 3 x 19
|4
|3
|-
|514
|2 x 257
|2
|1
|-
|515
|5 x 103
|2
|1
|-
|516
|2 x 2 x 3 x 43
|4
|2
|-
|517
|11 x 47
|2
|1
|-
|518
|2 x 7 x 37
|3
|1
|-
|519
|3 x 173
|2
|1
|-
|520
|2 x 2 x 2 x 5 x 13
|5
|3
|-
|521
|521
|1
|1
|-
|522
|2 x 3 x 3 x 29
|4
|2
|-
|523
|523
|1
|1
|-
|524
|2 x 2 x 131
|3
|2
|-
|525
|3 x 5 x 5 x 7
|4
|2
|-
|526
|2 x 263
|2
|1
|-
|527
|17 x 31
|2
|1
|-
|528
|2 x 2 x 2 x 2 x 3 x 11
|6
|4
|-
|529
|23 x 23
|2
|2
|-
|530
|2 x 5 x 53
|3
|1
|-
|531
|3 x 3 x 59
|3
|2
|-
|532
|2 x 2 x 7 x 19
|4
|2
|-
|533
|13 x 41
|2
|1
|-
|534
|2 x 3 x 89
|3
|1
|-
|535
|5 x 107
|2
|1
|-
|536
|2 x 2 x 2 x 67
|4
|3
|-
|537
|3 x 179
|2
|1
|-
|538
|2 x 269
|2
|1
|-
|539
|7 x 7 x 11
|3
|2
|-
|540
|2 x 2 x 3 x 3 x 3 x 5
|6
|3
|-
|541
|541
|1
|1
|-
|542
|2 x 271
|2
|1
|-
|543
|3 x 181
|2
|1
|-
|544
|2 x 2 x 2 x 2 x 2 x 17
|6
|5
|-
|545
|5 x 109
|2
|1
|-
|546
|2 x 3 x 7 x 13
|4
|1
|-
|547
|547
|1
|1
|-
|548
|2 x 2 x 137
|3
|2
|-
|549
|3 x 3 x 61
|3
|2
|-
|550
|2 x 5 x 5 x 11
|4
|2
|-
|551
|19 x 29
|2
|1
|-
|552
|2 x 2 x 2 x 3 x 23
|5
|3
|-
|553
|7 x 79
|2
|1
|-
|554
|2 x 277
|2
|1
|-
|555
|3 x 5 x 37
|3
|1
|-
|556
|2 x 2 x 139
|3
|2
|-
|557
|557
|1
|1
|-
|558
|2 x 3 x 3 x 31
|4
|2
|-
|559
|13 x 43
|2
|1
|-
|560
|2 x 2 x 2 x 2 x 5 x 7
|6
|4
|-
|561
|3 x 11 x 17
|3
|1
|-
|562
|2 x 281
|2
|1
|-
|563
|563
|1
|1
|-
|564
|2 x 2 x 3 x 47
|4
|2
|-
|565
|5 x 7 x 19
|3
|1
|-
|566
|2 x 283
|2
|1
|-
|567
|3 x 3 x 3 x 3 x 7
|5
|4
|-
|568
|2 x 2 x 2 x 71
|4
|3
|-
|569
|569
|1
|1
|-
|570
|2 x 3 x 5 x 19
|4
|1
|-
|571
|571
|1
|1
|-
|572
|2 x 2 x 11 x 13
|4
|2
|-
|573
|3 x 191
|2
|1
|-
|574
|2 x 7 x 41
|3
|1
|-
|575
|5 x 5 x 23
|3
|2
|-
|576
|2 x 2 x 2 x 2 x 2 x 2 x 3 x 3
|8
|6
|-
|577
|577
|1
|1
|-
|578
|2 x 17 x 17
|3
|2
|-
|579
|3 x 193
|2
|1
|-
|580
|2 x 2 x 5 x 29
|4
|2
|}
==References==
<references />All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://test.wikipedia.org/w/index.php?oldid=482092.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|