Difference between revisions 11329109 and 11329115 on trwiki[[Matematik analiz]]'de,'''Bessel–Clifford fonksiyonu''', [[Friedrich Bessel]] ve [[William Kingdon Clifford]] anısına atfetdilen iki [[kompleks değişken]]'li bir [[Tam fonksiyon]]'dur.Bu teori [[Bessel fonksiyonu]]'na alternatif bir gelişme temin etmek için kullanılabilir. :<math>\pi(x) = \frac{1}{\Pi(x)} = \frac{1}{\Gamma(x+1)}</math> ise (contracted; show full) *{{Citation |first=Rolf |last=Wallisser |chapter=On Lambert's proof of the irrationality of π |title=Algebraic Number Theory and Diophantine Analysis |editor1-first=Franz |editor1-last=Halter-Koch |editor2-first=Robert F. |editor2-last=Tichy |year=2000 |location=Berlin |publisher=Walter de Gruyer |isbn=3-11-016304-7 }}. {{DEFAULTSORT:Bessel–Clifford Function}} [[Category:Karmaşık analiz]] [[Category:Special hypergeometric functions]] [[Category: Algebraic number theoryCebirsel sayı kuramı]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://tr.wikipedia.org/w/index.php?diff=prev&oldid=11329115.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|