Difference between revisions 11345279 and 11345289 on trwiki

[[Matematik]]'te, '''Struve fonksiyonları''' <math>\mathbf{H}_\alpha(x)</math>,non-homojen ''y''(''x'') 'ın çözümü  '''Struve fonksiyonları''' 'dır      
[[Bessel diferansiyel denklemi]]:
: <math>x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2)y = \frac{4{(x/2)}^{\alpha+1}}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})}</math>

(contracted; show full)
*{{cite journal|doi=10.1002/andp.18822531319 |first=H. |last=Struve |title=Beitrag zur Theorie der Diffraction an Fernröhren |journal= Ann. Physik Chemie |volume= 17|issue=13 |year=1882 |pages= 1008–1016|bibcode = 1882AnP...253.1008S }}

==Dış bağlantılar==
*[http://functions.wolfram.com/Bessel-TypeFunctions/StruveH/introductions/Struves/ Struve functions] at [http://functions.wolfram.com the Wolfram functions site].

{{DEFAULTSORT:Struve Function}}
[[Category:
Special functionsÖzel fonksiyonlar]]
[[Category:Struve family]]

[[ro:Funcție Struve]]
[[ru:Функция Струве]]