Difference between revisions 215718 and 217337 on zh_classicalwiki

{{當代數學}}
半單李代數表示論中,'''嘉當矩陣'''為一[[矩陣|整數方陣]],曰 A,
*(C1)各主斜元<math>a_{ii}</math>俱為 2,
*(C2)他元不大於 0,
*(C3)<math>a_{ij} = 0</math> 當且僅當 <math>a_{ji}=0</math>
*(C4) A = (正對角矩陣)。(正定對稱矩陣)

[[半單李代數]] (之[[根系]]) 之主要訊息蘊涵於嘉當矩陣。每嘉當矩陣又可表以[[Dynkin 圖]]。

==推廣==
===廣義嘉當矩陣(或曰 ''Kac-Moody'' 矩陣)===
*僅需符(C1 - C3)。

===廣義''Kac-Moody'' 矩陣(或曰 ''Borcherds-Kac-Moody'' 矩陣)===
*(C' 1) 各主斜元<math>a_{ii}</math>俱為 2  或 少於等於0,
*(C' 2) 他元不大於 0,
*(C' 3)<math>a_{ij} = 0</math> 當且僅當 <math>a_{ji}=0</math>
*(C' 4)若<math>a_{ii}=2  </math> 則每一j : <math> a_{ij}\in \mathbb{Z} </math>

=== ''Borcherds-Kac-Moody'' 超矩陣===
設<math>\Psi \subset{1,...,n}</math>
*(C'1 - C'4)
及
*(C' 5) 若 <math>i \in \Psi </math> 與 <math>a_{ii}=2</math>則 每 j : <math> a_{ij}\in 2\mathbb{Z} </math>。

==攷==
*Victor Kac, 《Infinite dimensional Lie algebras》, Cambridge University Press,  ISBN 0-521-46693-8
*脇本實/Kenji Iohara 譯,《Infinite-Dimensional Lie Algebras》, American Mathematical Society, Providence / Iwanami Shoten, Tokyo,    ISBN 0-8218-2654-9

{{殘章}}

[[category:李代數]]
[[category:表示論]]
[[category:組合學]]

[[en:Cartan matrix]]
[[it:Matrice di Cartan]]
[[nl:Cartan-matrix]]
[[sl:Cartanova matrika]]
[[zh:嘉當矩陣]]