Difference between revisions 215718 and 217337 on zh_classicalwiki{{當代數學}} 半單李代數表示論中,'''嘉當矩陣'''為一[[矩陣|整數方陣]],曰 A, *(C1)各主斜元<math>a_{ii}</math>俱為 2, *(C2)他元不大於 0, *(C3)<math>a_{ij} = 0</math> 當且僅當 <math>a_{ji}=0</math> *(C4) A = (正對角矩陣)。(正定對稱矩陣) [[半單李代數]] (之[[根系]]) 之主要訊息蘊涵於嘉當矩陣。每嘉當矩陣又可表以[[Dynkin 圖]]。 ==推廣== ===廣義嘉當矩陣(或曰 ''Kac-Moody'' 矩陣)=== *僅需符(C1 - C3)。 ===廣義''Kac-Moody'' 矩陣(或曰 ''Borcherds-Kac-Moody'' 矩陣)=== *(C' 1) 各主斜元<math>a_{ii}</math>俱為 2 或 少於等於0, *(C' 2) 他元不大於 0, *(C' 3)<math>a_{ij} = 0</math> 當且僅當 <math>a_{ji}=0</math> *(C' 4)若<math>a_{ii}=2 </math> 則每一j : <math> a_{ij}\in \mathbb{Z} </math> === ''Borcherds-Kac-Moody'' 超矩陣=== 設<math>\Psi \subset{1,...,n}</math> *(C'1 - C'4) 及 *(C' 5) 若 <math>i \in \Psi </math> 與 <math>a_{ii}=2</math>則 每 j : <math> a_{ij}\in 2\mathbb{Z} </math>。 ==攷== *Victor Kac, 《Infinite dimensional Lie algebras》, Cambridge University Press, ISBN 0-521-46693-8 *脇本實/Kenji Iohara 譯,《Infinite-Dimensional Lie Algebras》, American Mathematical Society, Providence / Iwanami Shoten, Tokyo, ISBN 0-8218-2654-9 {{殘章}} [[category:李代數]] [[category:表示論]] [[category:組合學]]⏎ ⏎ [[en:Cartan matrix]] [[it:Matrice di Cartan]] [[nl:Cartan-matrix]] [[sl:Cartanova matrika]] [[zh:嘉當矩陣]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://zh-classical.wikipedia.org/w/index.php?diff=prev&oldid=217337.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|