Revision 223887 of "微積分基本定理" on zh_classicalwiki'''微積分基本定理'''者,書之如下:
* 若實值[[函數]] <math>f</math> 於[[閉區間]] [''a'', ''b''] 上[[連續]],且<math>F(x) = \int_{a}^{x} f(t)\, dt</math>,則 <math>\forall x\in </math> [''a'', ''b''],<math>\frac{dF(x)}{dx} = f(x) </math>
反之,
* 若 <math>F</math> 於[[閉區間]] [''a'', ''b''] 上[[可微]],且其[[導函數]] <math>f</math> 連續,則<math>F(b) - F(a) = \int_{a}^{b} f(t)\, dt</math>
斯定理者,聯微分與積分,為後世[[數學分析]]之始也。且为貫通諸化[[內部]]為[[邊界(數學)|邊界]]之定理。
== 參見 ==
* [[微積分]]
{{stub}}
[[Category:數學分析]]
[[Category:定理]]
This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|