Difference between revisions 32757251 and 32757262 on zhwiki

生物的进化(Evolution)过程主要是通过染色体之间的交叉和变异来完成的。基于对自然界中生物遗传与进化机理的模仿,针对不同的问题,很多学者设计了许多不同的编码方法来表示问题的可行解,开发出了许多种不同的遗传算子来模仿不同环境下的生物遗传特性。这样,由不同的编码(Coding)方法和不同的遗传算子就构成了各种不同的遗传算法。

遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了 达尔文的进化论和孟德尔的遗传学说。其本质是一种高效、并行、全局搜索的方法,它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应的控制搜索过程以求得最优解。遗传算法操作使用适者生存的原则,在潜在的解决方案种群中逐次产生一个近似最优解的方案,在遗传算法的每一代中,根据个体在问题域中的适应度值和从自然遗传学中借鉴来的再造方法进行个体选择,产生一个新的近似解。这个过程导致种群中个体的进化,得到的新个体比原来个体更能适应环境,就像自然界中的改造一样。

(contracted; show full)|issue=6
|pages=1362–1381
|doi=10.1109/TSMCB.2009.2015956
|url=http://eprints.gla.ac.uk/7645/1/7645.pdf
}}
</ref>


<ref name=OLPSO>
{{cite journal
|last1=Zhan
|first1=Zhi-Hui, et al
|title=Orthogonal learning particle swarm optimization
|journal=IEEE Transactions on Evolutionary Computation
|year=2009
|volume=15
|issue=6
|pages=832–847
|doi=10.1109/TEVC.2010.2052054
|url=http://eprints.gla.ac.uk/44801/1/44801.pdf
}}
</ref>

<ref name=CAutoD04>
{{cite journal
|last1=Li
|first1=Yun, et al
|title=CAutoCSD-evolutionary search and optimisation enabled computer automated control system design
|journal=International Journal of Automation and Computing
|year=2004
|volume=1
(contracted; show full)* [http://www-illigal.ge.uiuc.edu/IlliGAL 伊利诺斯遗传算法实验室] - 可以下载技术报告和程序源代码。
* [http://www.it-weise.de/projects/book.pdf Global Optimization Algorithms - Theory and Application]

[[Category:算法]]
[[Category:遗传算法]]
[[Category:最优化算法]]
[[Category:人工智能]]
[[Category:人工智能应用]]