Difference between revisions 33708226 and 33764322 on zhwiki

生物的进化(Evolution)过程主要是通过染色体之间的交叉和变异来完成的。基于对自然界中生物遗传与进化机理的模仿,针对不同的问题,很多学者设计了许多不同的编码方法来表示问题的可行解,开发出了许多种不同的遗传算子来模仿不同环境下的生物遗传特性。这样,由不同的编码(Coding)方法和不同的遗传算子就构成了各种不同的遗传算法。

遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种高效、并行、全局搜索的方法,它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应的控制搜索过程以求得最优解。遗传算法操作使用适者生存的原则,在潜在的解决方案种群中逐次产生一个近似最优解的方案,在遗传算法的每一代中,根据个体在问题域中的适应度值和从自然遗传学中借鉴来的再造方法进行个体选择,产生一个新的近似解。这个过程导致种群中个体的进化,得到的新个体比原来个体更能适应环境,就像自然界中的改造一样。

(contracted; show full)

遗传算法有时候还引入其他变量,例如在实时优化问题中,可以在适应度函数中引入时间相关性和干扰。

== 在线交互式演示与学习课件 ==
英国[[格拉斯哥大学]]在1997年出版了一个遗传/进化算法的网上在线交互式演示Java小程序:the [http://userweb.eng.gla.ac.uk/yun.li/ga_demo/index.html '''EA_demo'''],以帮助进化计算的新手了解遗传算法的编码和工作原理,至今仍广泛使用,采用大学包括英国利物浦(Liverpool)大学、苏塞克斯(Sussex)大学、北安普顿(Northampton)大学,德国乌尔姆(Ulm)大学,瑞士日内瓦(Geneva)大学,西班牙格林纳达(Granada)大学,葡萄牙新里斯本(Nova de Lisboa)大学,美国加州大学戴维斯分校(UC Davies),加拿大卡尔加里(Calgary)大学,澳大利亚墨尔本皇家理工大学(RMIT),新加坡国立大学,台湾国立清华大学,上海交通大学,巴西PUCRS大学
,台灣科技大學(NTUST)等。 

EA_demo允许用户直接在网页上一代一代地手动运行,以看遗传/进化算法是怎样一步一步操作的,亦可在背景中批次运行,以观察算法的收敛和染色体是否跳出局部最优。用户可以改变终止代数,群体规模,交配率,变异率和选择机制。也有其它自学课件收录于[http://geneticalgorithms.ai-depot.com/Applications.html AI中心网站]和[http://teaching.softcomputing.es/ 欧洲软计算中心网站]。

== 适用的问题 ==

遗传算法擅长解决的问题是[[组合最优化|全局最优化问题]],例如,解决[[时间表安排]]问题就是它的一个特长,很多安排时间表的软件都使用遗传算法,遗传算法还经常被用于解决实际[[工程问题]]。

(contracted; show full)* [http://www-illigal.ge.uiuc.edu/IlliGAL 伊利诺斯遗传算法实验室] - 可以下载技术报告和程序源代码。
* [http://www.it-weise.de/projects/book.pdf Global Optimization Algorithms - Theory and Application]

[[Category:算法]]
[[Category:遗传算法]]
[[Category:最优化算法]]
[[Category:人工智能]]
[[Category:人工智能应用]]