Difference between revisions 34036617 and 34036621 on zhwiki生物的进化(Evolution)过程主要是通过染色体之间的交叉和变异来完成的。基于对自然界中生物遗传与进化机理的模仿,针对不同的问题,很多学者设计了许多不同的编码方法来表示问题的可行解,开发出了许多种不同的遗传算子来模仿不同环境下的生物遗传特性。这样,由不同的编码(Coding)方法和不同的遗传算子就构成了各种不同的遗传算法。 遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种高效、并行、全局搜索的方法,它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应的控制搜索过程以求得最优解。遗传算法操作使用适者生存的原则,在潜在的解决方案种群中逐次产生一个近似最优解的方案,在遗传算法的每一代中,根据个体在问题域中的适应度值和从自然遗传学中借鉴来的再造方法进行个体选择,产生一个新的近似解。这个过程导致种群中个体的进化,得到的新个体比原来个体更能适应环境,就像自然界中的改造一样。 (contracted; show full)* 移动通讯优化结构。 * 时间表安排,例如为一个大学安排不冲突的课程时间表。 * [[旅行推销员问题]]。 * [[神经网络]]的训练,也叫做神经进化。 == 相关技术 == [[遗传程序]]是 [[约翰John Koza]]与遗传算法相关的一个技术,在遗传程序中,并不是参数优化,而是计算机程序优化。遗传程序一般采用[[树 (图论)|树型结构]]表示计算机程序用于进化,而不是遗传算法中的列表或者数组。一般来说,遗传程序比遗传算法慢,但同时也可以解决一些遗传算法解决不了的问题。 [[交互式遗传算法]]是利用人工评价进行操作的遗传算法,一般用于适应度函数无法得到的情况,例如,对于图像、音乐、艺术的设计和“优化”,或者对运动员的训练等。 [[模拟退火]]是解决全局优化问题的另一个可能选择。它是通过一个解在搜索空间的随机变动寻找最优点的方法:如果某一阶段的随机变动增加适应度,则总是被接受,而降低适应度的随机变动根据一定的概率被有选择的接受。这个概率由当时的[[退火温度]]和适应度恶化的程度决定,而退火温度按一定速度降低。从模拟退火算法看,最优化问题的解是通过寻找最小能量点找到的,而不是寻找最佳适应点找到的。模拟退火也可以用于标准遗传算法里,只要把突变率随时间逐渐降低就可以了。 == 参见 == * [[演化策略]] (contracted; show full)* [http://www-illigal.ge.uiuc.edu/IlliGAL 伊利诺斯遗传算法实验室] - 可以下载技术报告和程序源代码。 * [http://www.it-weise.de/projects/book.pdf Global Optimization Algorithms - Theory and Application] [[Category:算法]] [[Category:遗传算法]] [[Category:最优化算法]] [[Category:人工智能]] [[Category:人工智能应用]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://zh.wikipedia.org/w/index.php?diff=prev&oldid=34036621.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|