Difference between revisions 58546894 and 74294721 on enwiki

:''For more background on this topic, see [[derivative]].''

===Example 1===
Consider ''f''(''x'') = 5:

: <math>f'(x)=\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\rightarrow 0} \frac{f(x+h)-5}{h} =  \lim_{h\rightarrow 0} \frac{(5-5)}{h} = \lim_{h\rightarrow 0} \frac{0}{h} = \lim_{h\rightarrow 0} 0 = 0</math>

The derivative of a [[constant function]] is [[0 (number)|zero]].

===Example 2===
Consider the graph of <math>f(x)=2x-3</math>. If the reader has an understanding of [[algebra]] and the [[Cartesian coordinate system]], the reader should be able to independently determine that this [[line (mathematics)|line]] has a slope of 2 at every point. Using the above quotient (along with an understanding of the [[limit (mathematics)|limit]], [[secant]], and [[tangent]]) one can determine (contracted; show full)|
|<math> = \frac{-1}{4 x \sqrt{x}}</math>
|}

[[Category:calculus]] [[Category:Mathematical notation]]

[[eo:Derivaĵo (ekzemploj)]]
[[fr:Exemples de calcul de dérivée]]