Difference between revisions 74294721 and 80877183 on enwiki:''For more background on this topic, see [[derivative]].'' ===Example 1=== Consider ''f''(''x'') = 5: : <math>f'(x)=\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\rightarrow 0} \frac{f(x+h)-5}{h} = \lim_{h\rightarrow 0} \frac{(5-5)}{h} = \lim_{h\rightarrow 0} \frac{0}{h} = \lim_{h\rightarrow 0} 0 = 0</math> The derivative of a [[constant function]] is [[0 (number)|zero]]. (contracted; show full)|<math> f'(x)\, </math> |<math>= \lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h} </math> |- | |<math> = \lim_{h\rightarrow 0}\frac{\sqrt{x+h} - \sqrt{x}}{h} </math> |- | |<math> = \lim_{h\rightarrow 0}\ left(\frac{(\sqrt{x+h} - \sqrt{x})(}{h}\right) \left(\frac{\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}\right) </math> |- | |<math> = \lim_{h\rightarrow 0}\frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})} </math> |- | |<math> = \lim_{h\rightarrow 0}\frac{1}{\sqrt{x+h} + \sqrt{x}} </math> |- (contracted; show full)| |<math> = \frac{-1}{4 x \sqrt{x}}</math> |} [[Category:calculus]] [[Category:Mathematical notation]] [[eo:Derivaĵo (ekzemploj)]] [[fr:Exemples de calcul de dérivée]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://en.wikipedia.org/w/index.php?diff=prev&oldid=80877183.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|