Difference between revisions 3684389 and 3684390 on mswiki{{pelbagai isu|{{cleanup|reason=memerlukan penterjemahan segera kerana sudah ditinggalkan sejak tahun 2008|date=Ogos 2014}}{{Terjemah|en|fabonacci number|date=Ogos 2014}}}} {{proses|BukanTeamBiasa}} [[Image:FibonacciBlocks.svg|thumb|180px|right|Suatu ubinan dengan segi empat yang tepinya adalah nombor Fibonaci berturut-turut pada panjangnya]] (contracted; show full) This is equivalent to saying that for odd ''n'' all the odd prime factors of F<sub>''n''</sub> are ≡ 1 (mod 4). <blockquote>For example, F<sub>1</sub> = 1, F<sub>3</sub> = 2, F<sub>5</sub> = 5, F<sub>7</sub> = 13, F<sub>9</sub> = 34 = 2×17, F<sub>11</sub> = 89, F<sub>13</sub> = 233, F<sub>15</sub> = 610 = 2×5×61 </blockquote> ===Fibonacci dand Legendre=== There are some interesting formulas connecting the Fibonacci numbers and the [[dapat beberapa rumus yang menarik menghubungkan nombor Fibonacci dan [[simbol Legendre symbol]] <math>\;\left(\tfrac{p}{5}\right).</math> :<math> \left(\frac{p}{5}\right) = \left \{ \begin{array}{cl} 0 & \textrm{if}\;p =5 \\ 1 &\textrm{if}\;p \equiv \pm1 \pmod 5 \\ -1 &\textrm{if}\;p \equiv \pm2 \pmod 5 \end{array} \right. </math> IfJika ''p'' is a prime nualah [[nombeor thenperdana]], maka<ref>[[Paulo Ribenboim]] (1996), ''The New Book of Prime Number Records'', New York: Springer, ISBN 0-387-94457-5, p. 64</ref><ref>Franz Lemmermeyer (2000), ''Reciprocity Laws'', New York: Springer, ISBN 3-540-66957-4, ex 2.25-2.28, pp. 73-74</ref> <math> F_{p} \equiv \left(\frac{p}{5}\right) \pmod p \;\;\mbox{ and }\;\;\; F_{p-\left(\frac{p}{5}\right)} \equiv 0 \pmod p. </math> <blockquote> For exampleSebagai contoh, :<math>(\tfrac{2}{5}) = -1, \,\, F_3 = 2, F_2=1,</math> :<math>(\tfrac{3}{5}) = -1, \,\, F_4 = 3,F_3=2,</math> :<math>(\tfrac{5}{5}) = \;\;\,0,\,\, F_5 = 5,</math> :<math>(\tfrac{7}{5}) = -1, \,\,F_8 = 21,\;\;F_7=13,</math> :<math>(\tfrac{11}{5}) = +1, F_{10} = 55, F_{11}=89.</math> </blockquote> Also, ifJuga, jika ''p'' ≠ 5 is an odd primeadalah nuombeor thenperdana ganjil, maka: <ref>Lemmermeyer, ex. 2.38, pp. 73-74</ref> :<math>5F^2_{\left(p \pm 1 \right) / 2} \equiv \begin{cases} \frac{5\left(\frac{p}{5}\right)\pm 5}{2} \pmod p & \textrm{if}\;p \equiv 1 \pmod 4\\ \\ \frac{5\left(\frac{p}{5}\right)\mp 3}{2} \pmod p & \textrm{if}\;p \equiv 3 \pmod 4 \end{cases} </math> <blockquote> Examples of all the casContoh bagi semua kes: :<math>p=7 \equiv 3 \pmod 4, \;\;(\tfrac{7}{5}) = -1, \frac{5(\frac{7}{5})+3}{2} =-1\mbox{ and }\frac{5(\frac{7}{5})-3}{2}=-4.</math> ::<math>F_3=2 \mbox{ and } F_4=3.</math> ::<math>5F_3^2=20\equiv -1 \pmod {7}\;\;\mbox{ and }\;\;5F_4^2=45\equiv -4 \pmod {7}</math> :<math>p=11 \equiv 3 \pmod 4, \;\;(\tfrac{11}{5}) = +1, \frac{5(\frac{11}{5})+3}{2} =4\mbox{ and }\frac{5(\frac{11}{5})- 3}{2}=1.</math> (contracted; show full) *[http://web.archive.org/web/20070715032716/http://mathdl.maa.org/convergence/1/?pa=content&sa=viewDocument&nodeId=630&bodyId=1002 Fibonacci Numbers] at [http://web.archive.org/web/20060212072618/http://mathdl.maa.org/convergence/1/ Convergence] * [http://www.tools4noobs.com/online_tools/fibonacci/ Online Fibonacci calculator] [[Kategori:Fibonacci numbers|*]] [[Kategori:Articles containing proofs]] <!-- interwiki --> All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://ms.wikipedia.org/w/index.php?diff=prev&oldid=3684390.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|