Difference between revisions 3684390 and 3684391 on mswiki{{pelbagai isu|{{cleanup|reason=memerlukan penterjemahan segera kerana sudah ditinggalkan sejak tahun 2008|date=Ogos 2014}}{{Terjemah|en|fabonacci number|date=Ogos 2014}}}} {{proses|BukanTeamBiasa}} [[Image:FibonacciBlocks.svg|thumb|180px|right|Suatu ubinan dengan segi empat yang tepinya adalah nombor Fibonaci berturut-turut pada panjangnya]] (contracted; show full) \end{array} \right. </math> Jika ''p'' ialah [[nombor perdana]], maka<ref>[[Paulo Ribenboim]] (1996), ''The New Book of Prime Number Records'', New York: Springer, ISBN 0-387-94457-5, p. 64</ref><ref>Franz Lemmermeyer (2000), ''Reciprocity Laws'', New York: Springer, ISBN 3-540-66957-4, ex 2.25-2.28, pp. 73-74</ref> <math> F_{p} \equiv \left(\frac{p}{5}\right) \pmod p \;\;\mbox{ dand }\;\;\; F_{p-\left(\frac{p}{5}\right)} \equiv 0 \pmod p. </math> <blockquote> Sebagai contoh, :<math>(\tfrac{2}{5}) = -1, \,\, F_3 = 2, F_2=1,</math> :<math>(\tfrac{3}{5}) = -1, \,\, F_4 = 3,F_3=2,</math> :<math>(\tfrac{5}{5}) = \;\;\,0,\,\, F_5 = 5,</math> :<math>(\tfrac{7}{5}) = -1, \,\,F_8 = 21,\;\;F_7=13,</math> :<math>(\tfrac{11}{5}) = +1, F_{10} = 55, F_{11}=89.</math> </blockquote> Juga, jika ''p'' ≠5 adalah nombor perdana ganjil, maka: <ref>Lemmermeyer, ex. 2.38, pp. 73-74</ref> :<math>5F^2_{\left(p \pm 1 \right) / 2} \equiv \begin{cases} \frac{5\left(\frac{p}{5}\right)\pm 5}{2} \pmod p & \textrm{if}\;p \equiv 1 \pmod 4\\ \\ \frac{5\left(\frac{p}{5}\right)\mp 3}{2} \pmod p & \textrm{if}\;p \equiv 3 \pmod 4 \end{cases} </math> <blockquote> Contoh bagi semua kes: :<math>p=7 \equiv 3 \pmod 4, \;\;(\tfrac{7}{5}) = -1, \frac{5(\frac{7}{5})+3}{2} =-1\mbox{ dand }\frac{5(\frac{7}{5})-3}{2}=-4.</math> ::<math>F_3=2 \mbox{ dand } F_4=3.</math> ::<math>5F_3^2=20\equiv -1 \pmod {7}\;\;\mbox{ dand }\;\;5F_4^2=45\equiv -4 \pmod {7}</math> :<math>p=11 \equiv 3 \pmod 4, \;\;(\tfrac{11}{5}) = +1, \frac{5(\frac{11}{5})+3}{2} =4\mbox{ dand }\frac{5(\frac{11}{5})- 3}{2}=1.</math> ::<math>F_5=5 \mbox{ dand } F_6=8.</math> ::<math>5F_5^2=125\equiv 4 \pmod {11} \;\;\mbox{ dand }\;\;5F_6^2=320\equiv 1 \pmod {11}</math> :<math>p=13 \equiv 1 \pmod 4, \;\;(\tfrac{13}{5}) = -1, \frac{5(\frac{13}{5})-5}{2} =-5\mbox{ dand }\frac{5(\frac{13}{5})+ 5}{2}=0.</math> ::<math>F_6=8 \mbox{ dand } F_7=13.</math> ::<math>5F_6^2=320\equiv -5 \pmod {13} \;\;\mbox{ dand }\;\;5F_7^2=845\equiv 0 \pmod {13}</math> :<math>p=29 \equiv 1 \pmod 4, \;\;(\tfrac{29}{5}) = +1, \frac{5(\frac{29}{5})-5}{2} =0\mbox{ dand }\frac{5(\frac{29}{5})+5}{2}=5.</math> ::<math>F_{14}=377 \mbox{ dand } F_{15}=610.</math> ::<math>5F_{14}^2=710645\equiv 0 \pmod {29} \;\;\mbox{ dand }\;\;5F_{15}^2=1860500\equiv 5 \pmod {29}</math> </blockquote> ===Kebolehbahagian dengan 11=== <math>\sum_{k=n}^{n+9} F_{k} = 11 F_{n+6}</math> <blockquote>Sebagai contoh, jadi ''n'' = 1: <br> (contracted; show full) *[http://web.archive.org/web/20070715032716/http://mathdl.maa.org/convergence/1/?pa=content&sa=viewDocument&nodeId=630&bodyId=1002 Fibonacci Numbers] at [http://web.archive.org/web/20060212072618/http://mathdl.maa.org/convergence/1/ Convergence] * [http://www.tools4noobs.com/online_tools/fibonacci/ Online Fibonacci calculator] [[Kategori:Fibonacci numbers|*]] [[Kategori:Articles containing proofs]] <!-- interwiki --> All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://ms.wikipedia.org/w/index.php?diff=prev&oldid=3684391.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|