Difference between revisions 3684615 and 3684616 on mswiki{{pelbagai isu|{{cleanup|reason=memerlukan penterjemahan segera kerana sudah ditinggalkan sejak tahun 2008|date=Ogos 2014}}{{Terjemah|en|fabonacci number|date=Ogos 2014}}}} {{proses|BukanTeamBiasa}} [[Image:FibonacciBlocks.svg|thumb|180px|right|Suatu ubinan dengan segi empat yang tepinya adalah nombor Fibonaci berturut-turut pada panjangnya]] (contracted; show full) Jika suatu jumlah mengandungi 2 sebagai penghasil tambah, sebutan pertama bagi penghasil tambah itu mesti berlaku di antara posisi yang pertama dan yang ke-(''n'' + 1). Maka ''F''(''n'') + ''F''(''n'' − 1) + … + ''F''(0) memberikan pengiraan yang dikehendaki. === Third Identity === This identity has slightly different forms for <math>F_k</math>, depending on whether k is odd or evenPengenalan Ketiga === Identiti ini mempunyai bentuk yang sedikit berbeza untuk <math>F_k</math>, bergantung kepada sama ada k adalah ganjil atau genap. :<math>\sum_{i=0}^{n-1} F_{2i+1} = F_{2n}</math> :<math>\sum_{i=0}^{n} F_{2i} = F_{2n+1}-1</math> <ref>{{cite book | title = Fibonacci Numbers |last = Vorobiev |first = Nikolaĭ Nikolaevich |coauthors = Mircea Martin | publisher = Birkhäuser | year = 2002 | id = ISBN 3-7643-6135-2 |chapter=Chapter 1 |pages = pp. 5–6}}</ref> :''The sum of the first n-1Jumlah bagi nombor Fibonacci numbers-1 pertama, <math>F_j</math>, such that j is odd is the (2n)th Fibonacci number.'' :''The sum of the first nbahawa j ganjil adalah nombor Fibonacci ke-(2n).'' :''Jumlah bagi nombor Fibonacci numbers pertama, <math>F_j</math>, such that j is even is the (2n+1)th Fibonacci number minus 1.'' ==== Proofs ==== By induction forbahawa j genap adalah nombor Fibonacci ke-(2n+1) tolak 1.'' ==== Pembuktian ==== Aruhan bagi <math>F_{2n}</math>: :<math>F_1+F_3+F_5+...+F_{2n-3}+F_{2n-1}=F_{2n}</math> :<math>F_1+F_3+F_5+...+F_{2n-3}+F_{2n-1}+F_{2n+1}=F_{2n}+F_{2n+1}</math> :<math>F_1+F_3+F_5+...+F_{2n-3}+F_{2n-1}+F_{2n+1}=F_{2n+2}</math> A basis case for this could beKes asas ini untuk boleh menjadi <math>F_1=F_2</math>. <br> By induction forAruhan bagi <math>F_{2n+1}</math>: :<math>F_0+F_2+F_4+...+F_{2n-2}+F_{2n}=F_{2n+1}-1</math> :<math>F_0+F_2+F_4+...+F_{2n-2}+F_{2n}+F_{2n+2}=F_{2n+1}+F_{2n+2}-1</math> :<math>F_0+F_2+F_4+...+F_{2n-2}+F_{2n}+F_{2n+2}=F_{2n+3}-1</math> A basis case for this could beKes asas ini untuk boleh menjadi <math>F_0=F_1-1</math>. === Fourth Identity === :<math>\sum_{i=0}^n iF_i = nF_{n+2} - F_{n+3} + 2</math> ==== Proof ==== (contracted; show full) *[http://web.archive.org/web/20070715032716/http://mathdl.maa.org/convergence/1/?pa=content&sa=viewDocument&nodeId=630&bodyId=1002 Fibonacci Numbers] at [http://web.archive.org/web/20060212072618/http://mathdl.maa.org/convergence/1/ Convergence] * [http://www.tools4noobs.com/online_tools/fibonacci/ Online Fibonacci calculator] [[Kategori:Fibonacci numbers|*]] [[Kategori:Articles containing proofs]] <!-- interwiki --> All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://ms.wikipedia.org/w/index.php?diff=prev&oldid=3684616.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|