Difference between revisions 3688640 and 3689798 on mswiki{{about|sejarah sains dalam tamadun Islam di antara abad ke-8 dan ke-16|maklumat pada sains dalam konteks Islam|Islam dan sains}} {{History of science sidebar}} (contracted; show full) sisa]] yang pertama bagi kutipan [[sampah]].<ref>S. P. Scott (1904), ''History of the Moorish Empire in Europe'', 3 vols, J. B. Lippincott Company, Philadelphia and London. <br /> F. B. Artz (1980), ''The Mind of the Middle Ages'', Third edition revised, [[University of Chicago Press]], pp 148-50. <br /> ([[cf.]] [http://www.1001inventions.com/index.cfm?fuseaction=main.viewSection&intSectionID=441 References], 1001 Inventions)</ref> === Physics === {{main|Islamic physics}} {{see|Book of Optics}} [[Fail:Ibn Sahl manuscript.jpg|thumb|Sehelai halaman manuskrip [[Ibn Sahl]] menunjuk penemuannya pada hukum [[pembiasan]] ([[Hukum Snell]]).]] In the [[optics]] field of [[physics]], [[Ibn Sahl]] (c. 940-1000), a mathematician and physicist connected with the court of [[Baghdad]], wrote a treatise ''On Burning Mirrors and Lenses'' in 984 in which he set out his understanding of how [[curved mirror]]s and [[lens (optics)|lenses]] bend and focus [[light]]. Ibn Sahl is now credited with first discovering the law of [[refraction]], usually called [[Snell's law]].<ref>K. B. Wolf, "Geometry and dynamics in refracting systems", ''European Journal of Physics'' '''16''', p. 14-20, 1995.</ref><ref name=rashed90>R. Rashed, "A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses", ''[[Isis (journal)|Isis]]'' '''81''', p. 464–491, 1990.</ref> He used this law to work out the shapes of lenses that focus light with no geometric aberrations, known as [[anaclastic lens]]es. [[Ibn al-Haytham]] (Alhazen) (965-1039), who is considered a pioneer of [[optics]] and the [[scientific method]], developed a broad theory of [[light]] and [[optics]] in his ''[[Book of Optics]]'' which explained [[Visual perception|vision]], using [[geometry]] and [[anatomy]], and stated that each point on an illuminated area or object radiates [[light]] rays in every direction, but that only one ray from each point, which strikes the eye perpendicularly, can be seen. The other rays strike at different angles and are not seen. He used the example of the [[camera obscura]] and [[pinhole camera]], which produces an inverted image, to support his argument. This contradicted Ptolemy's theory of vision that objects are seen by rays of light emanating from the eyes. Alhacen held light rays to be streams of minute particles that travelled at a [[Speed of light|finite speed]]. He improved accurately described the [[History of optics|refraction of light]], and discovered the laws of [[refraction]]. He dealt at length with the theory of various physical phenomena like [[shadow]]s, [[eclipse]]s, and the [[rainbow]]. He also attempted to explain [[binocular vision]] and the [[moon illusion]]. Through these extensive researches on optics, he is considered a pioneer of modern [[optics]]. His ''[[Book of Optics]]'' was later translated into [[Latin]], and has been ranked alongside [[Isaac Newton]]'s ''[[Philosophiae Naturalis Principia Mathematica]]'' as one of the most influential books in the [[history of physics]],<ref> H. Salih, M. Al-Amri, M. El Gomati (2005). "The Miracle of Light", ''A World of Science'' '''3''' (3). [[UNESCO]].</ref> for initiating a [[Scientific Revolution|revolution]] in [[optics]]<ref name=Hogendijk>{{citation|last1=Sabra|first1=A. I.|author1-link=A. I. Sabra|last2=Hogendijk|first2=J. P.|title=The Enterprise of Science in Islam: New Perspectives|pages=85–118|publisher=[[MIT Press]]|isbn=0262194821}}</ref> and [[visual perception]].<ref name=Hatfield>{{Citation |last=Hatfield |first=Gary |contribution=Was the Scientific Revolution Really a Revolution in Science? |editor1-last=Ragep |editor1-first=F. J. |editor2-last=Ragep |editor2-first=Sally P. |editor3-last=Livesey |editor3-first=Steven John |year=1996 |title=Tradition, Transmission, Transformation: Proceedings of Two Conferences on Pre-modern Science held at the University of Oklahoma |publisher=[[Brill Publishers]] |isbn=9004091262 |pages=500}}</ref> [[Avicenna]] (980-1037) agreed that the [[speed of light]] is finite, as he "observed that if the perception of light is due to the emission of some sort of particles by a luminous source, the speed of light must be finite."<ref>[[George Sarton]], ''Introduction to the History of Science'', Vol. 1, p. 710.</ref> [[Abū Rayhān al-Bīrūnī]] (973-1048) also agreed that light has a finite speed, and he was the first to discover that the speed of light is much faster than the [[speed of sound]].<ref name=Biruni/> [[Qutb al-Din al-Shirazi]] (1236-1311) and [[Kamāl al-Dīn al-Fārisī]] (1260-1320) gave the first correct explanations for the [[rainbow]] phenomenon.<ref>{{MacTutor|id=Al-Farisi|title=Al-Farisi}}</ref> In [[mechanics]], [[Ja'far Muhammad ibn Mūsā ibn Shākir]] (800-873) of the [[Banū Mūsā]] hypothesized that [[Astronomical object|heavenly bodies]] and [[celestial spheres]] were subject to the same [[Physical law|laws of physics]] as [[Earth]],<ref name=Saliba/> and in his ''Astral Motion'' and ''The Force of Attraction'', he also hypothesized that there was a [[force]] of [[Gravitation|attraction]] between [[Astronomical object|heavenly bodies]].<ref>K. A. Waheed (1978). ''Islam and The Origins of Modern Science'', p. 27. Islamic Publication Ltd., Lahore.</ref> [[Abū Rayhān al-Bīrūnī]] (973-1048), and later [[al-Khazini]], developed [[experiment]]al [[scientific method]]s for mechanics, especially the fields of [[statics]] and [[dynamics]], particularly for determining [[specific weight]]s, such as those based on the theory of [[balance]]s and [[Weighing scale|weighing]]. Muslim physicists unified statics and dynamics into the science of mechanics, and they combined the fields of [[hydrostatics]] with dynamics to give birth to [[hydrodynamics]]. They applied the mathematical theories of [[ratio]]s and [[infinitesimal]] techniques, and introduced [[algebra]]ic and fine [[calculation]] techniques into the field of statics. They were also generalized the theory of the [[centre of gravity]] and applied it to [[Three-dimensional space|three-dimensional]] bodies. They also founded the theory of the [[wiktionary:ponderable|ponderable]] [[lever]] and created the "science of [[gravity]]" which was later further developed in medieval Europe.<ref>Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", p. 642, in {{Harv|Morelon|Rashed|1996|pp=614-642}}: {{quote|"Using a whole body of mathematical methods (not only those inherited from the antique theory of ratios and infinitesimal techniques, but also the methods of the contemporary algebra and fine calculation techniques), Arabic scientists raised statics to a new, higher level. The classical results of Archimedes in the theory of the centre of gravity were generalized and applied to three-dimensional bodies, the theory of ponderable lever was founded and the 'science of gravity' was created and later further developed in medieval Europe. The phenomena of statics were studied by using the dynamic apporach so that two trends - statics and dynamics - turned out to be inter-related withina single science, mechanics. The combination of the dynamic apporach with Archimedean hydrostatics gave birth to a direction in science which may be called medieval hydrodynamics. [...] Numerous fine experimental methods were developed for determining the specific weight, which were based, in particular, on the theory of balances and weighing. The classical works of al-Biruni and al-Khazini can by right be considered as the beginning of the application of experimental methods in [[medieval science]]."}}</ref> Al-Biruni also theorized that [[acceleration]] is connected with non-uniform motion.<ref name=Biruni/> In mechanics, [[Ibn al-Haytham]] discussed the theory of [[Gravitation|attraction]] between [[mass]]es, and it seems that he was aware of the [[Magnitude (mathematics)|magnitude]] of [[acceleration]] due to [[gravity]], and he stated that the heavenly bodies "were accountable to the [[Physical law|laws of physics]]".<ref>Duhem, Pierre (1908, 1969). ''To Save the Phenomena: An Essay on the Idea of Physical theory from Plato to Galileo'', p. 28. University of Chicago Press, Chicago.</ref> Ibn al-Haytham also enunciated the law of [[inertia]] when he stated that a body moves [[perpetual motion|perpetually]] unless an external force stops it or changes its direction of motion.<ref name=Bizri>Dr. [[Nader El-Bizri]], "Ibn al-Haytham or Alhazen", in Josef W. Meri (2006), ''Medieval Islamic Civilization: An Encyclopaedia'', Vol. II, p. 343-345, [[Routledge]], New York, London.</ref> He also developed the concept of [[momentum]],<ref>Seyyed [[Hossein Nasr]], "The achievements of Ibn Sina in the field of science and his contributions to its philosophy", ''Islam & Science'', December 2003.</ref> though he did not quantify this concept mathematically. [[Avicenna]] (980-1037) developed the concept of [[momentum]], referring to [[impetus]] as being proportional to [[weight]] times [[velocity]].<ref name=Sayili>A. Sayili (1987), "Ibn Sīnā and Buridan on the Motion of the Projectile", ''Annals of the New York Academy of Sciences'' '''500''' (1), p. 477–482: {{quote|"Thus he considered impetus as proportional to weight times velocity. In other words, his conception of impetus comes very close to the concept of momentum of Newtonian mechanics."}}</ref> His theory of motion was also consistent with the concept of [[inertia]] in [[classical mechanics]].<ref name=Sayili/> In 1121, [[al-Khazini]], in ''The Book of the Balance of Wisdom'', proposed that the [[gravity]] and [[gravitational potential energy]] of a body varies depending on its distance from the centre of the Earth,<ref>Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", p. 621, in {{Harv|Morelon|Rashed|1996|pp=614-642}}</ref> and in [[statics]], he clearly differentiated between [[force]], [[mass]] and [[weight]].<ref>Salah Zaimeche PhD (2005). [http://www.muslimheritage.com/uploads/Merv.pdf Merv], p. 5-7. Foundation for Science Technology and Civilization.</ref> [[Ibn Bajjah|Avempace]] (d. 1138) argued that there is always a [[Reaction (physics)|reaction]] force for every force exerted,<ref>[[Shlomo Pines]] (1964), "La dynamique d’Ibn Bajja", in ''Mélanges Alexandre Koyré'', I, 442-468 [462, 468], Paris <br />([[cf.]] Abel B. Franco (October 2003), "Avempace, Projectile Motion, and Impetus Theory", ''Journal of the History of Ideas'' '''64''' (4): 521-546 [543])</ref> though he did not refer to the reaction force as being equal to the exerted force.<ref>Abel B. Franco (October 2003), "Avempace, Projectile Motion, and Impetus Theory", ''Journal of the History of Ideas'' '''64''' (4):521-546 [543])</ref> His theory of motion had an important influence on later physicists like [[Galileo Galilei]].<ref>Ernest A. Moody (1951). "Galileo and Avempace: The Dynamics of the Leaning Tower Experiment (I)", ''Journal of the History of Ideas'' '''12''' (2): 163-193 [.</ref> [[Hibat Allah Abu'l-Barakat al-Baghdaadi]] (1080-1165) wrote a critique of [[Aristotelian physics]] entitled ''al-Mu'tabar'', where he negated [[Aristotle]]'s idea that a constant [[force]] produces uniform motion, as he theorized that a force applied continuously produces [[acceleration]].<ref>{{cite encyclopedia |last=[[Shlomo Pines]] |title=Abu'l-Barakāt al-Baghdādī , Hibat Allah | encyclopedia = [[Dictionary of Scientific Biography]] |volume=1 |pages=26-28 |publisher=Charles Scribner's Sons |location=New York |date=1970 |isbn=0684101149}} <br />([[cf.]] Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", ''Journal of the History of Ideas'' '''64''' (4), p. 521-546 [528].)</ref> He also described acceleration as the rate of change of [[velocity]].<ref>A. C. Crombie, ''Augustine to Galileo 2'', p. 67.</ref> [[Averroes]] (1126–1198) defined and measured [[force]] as "the rate at which [[Mechanical work|work]] is done in changing the [[Kinetic energy|kinetic]] condition of a material [[Physical body|body]]"<ref>Ernest A. Moody (June 1951). "Galileo and Avempace: The Dynamics of the Leaning Tower Experiment (II)", ''Journal of the History of Ideas'' '''12''' (3), p. 375-422 [375].</ref> and correctly argued "that the effect and measure of force is change in the kinetic condition of a materially [[Friction|resistant]] [[mass]]."<ref>Ernest A. Moody (June 1951). "Galileo and Avempace: The Dynamics of the Leaning Tower Experiment (II)", ''Journal of the History of Ideas'' '''12''' (3), p. 375-422 [380].</ref> In the early 16th century, [[al-Birjandi]] developed a hypothesis similar to "circular inertia."<ref name=Ragep/> The Muslim developments in mechanics laid the foundations for the later development of [[classical mechanics]] in early modern EuropeFizik === {{main|Fizik Islam}} {{see|Kitab Optik}} [[Fail:Ibn Sahl manuscript.jpg|thumb|Sehelai halaman manuskrip [[Ibn Sahl]] yang memaparkan penemuannya dalam hukum [[pembiasan]] ([[Hukum Snell]]).]] Dalam bidang [[optik]] bagi [[fizik]], [[Ibn Sahl]] (c. 940-1000), seorang ahli matematik dan ahli fizik yang berhubungan dengan istana di [[Baghdad]], menulis sebuah karya yang berjudul ''Tentang Cermin dan Kanta yang Membakar'' pada tahun 984 yang di dalamnya beliau menjelaskan pemahamannya tentang bagaimana [[cermin melengkung]] dan [[kanta]] membiaskan dan menumpukan [[cahaya]]. Ibn Sahl kini dianggap orang pertama yang menemui hukum [[pembiasan]], yang biasanya dipanggil [[Hukum Snell]].<ref>K. B. Wolf, "Geometry and dynamics in refracting systems", ''European Journal of Physics'' '''16''', p. 14-20, 1995.</ref><ref name=rashed90>R. Rashed, "A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses", ''[[Isis (journal)|Isis]]'' '''81''', p. 464–491, 1990.</ref> Beliau menggunakan hukum ini untuk mencipta bentuk-bentuk kanta yang memfokuskan cahaya tanpa penyimpangan geometri, yang dikenali sebagai [[kanta asfera]]. [[Ibn al-Haitham]] (965-1039), yang dianggap perintis [[optik]] dan [[kaedah saintifik]], telah mengembangkan teori umum tentang [[cahaya]] dan optik di dalam ''[[Kitab Optik]]''nya yang menjelaskan mengenai [[penglihatan]], dengan menggunakan [[geometri]] dan [[anatomi]], dan menyatakan bahawa setiap titik pada kawasan yang diterangi pada objek memancarkan sinar [[cahaya]] pada setiap arah, tetapi hanya satu sinar dari setiap titik, yang mengenai mata secara serenjang, dapat dilihat. Sinar-sinar lain mengenai pada sudut yang berbeza dan tidak dapat dilihat. Beliau menggunakan contoh [[kamera obskura]] dan [[kamera lubang jarum]], yang menghasilkan imej terbalik, untuk menyokong hujahnya. Ini bertentangan dengan teori penglihatan Ptolemy bahawa objek kelihatan oleh sinar cahaya yang datang daripada mata. Ibn al-Haitham percaya bahawa sinar cahaya adalah arus partikel kecil yang bergerak pada [[kelajuan cahaya|kelajuan terbatas]]. Beliau menggambarkan dengan tepat [[pembiasan cahaya]], dan menemui hukum-hukum [[pembiasan]]. Beliau membicarakan dengan panjang lebar tentang teori pelbagai fenomena fizikal seperti [[bayang-bayang]], [[gerhana]] dan [[pelangi]]. Beliau juga cuba menjelaskan [[penglihatan dwimata]] dan [[ilusi bulan]]. Menerusi kajian-kajian tentang optik yang terperinci ini, beliau dianggap sebagai seorang perintis [[optik]] moden. ''[[Kitab Optik]]''nya kemudiannya diterjemahkan ke [[bahasa Latin]], dan dibariskan bersama ''[[Philosophiae Naturalis Principia Mathematica]]'' tulisan [[Isaac Newton]] sebagai salah satu buku yang paling berpengaruh dalam [[sejarah fizik]],<ref> H. Salih, M. Al-Amri, M. El Gomati (2005). "The Miracle of Light", ''A World of Science'' '''3''' (3). [[UNESCO]].</ref> kerana memulakan [[Revolusi Saintifik|revolusi]] dalam [[optik]]<ref name=Hogendijk>{{citation|last1=Sabra|first1=A. I.|author1-link=A. I. Sabra|last2=Hogendijk|first2=J. P.|title=The Enterprise of Science in Islam: New Perspectives|pages=85–118|publisher=[[MIT Press]]|isbn=0262194821}}</ref> dan [[tanggapan penglihatan]].<ref name=Hatfield>{{Citation |last=Hatfield |first=Gary |contribution=Was the Scientific Revolution Really a Revolution in Science? |editor1-last=Ragep |editor1-first=F. J. |editor2-last=Ragep |editor2-first=Sally P. |editor3-last=Livesey |editor3-first=Steven John |year=1996 |title=Tradition, Transmission, Transformation: Proceedings of Two Conferences on Pre-modern Science held at the University of Oklahoma |publisher=[[Brill Publishers]] |isbn=9004091262 |pages=500}}</ref> [[Ibnu Sina]] (980-1037) bersetuju bahawa [[kelajuan cahaya]] adalah terbatas, kerana beliau "memerhatikan bahawa jika tanggapan cahaya adalah disebabkan pemancaran sebahagian partikel oleh sumber yang berkilau, kelajuan cahaya pastinya terbatas."<ref>[[George Sarton]], ''Introduction to the History of Science'', Vol. 1, p. 710.</ref> [[Al-Biruni]] (973-1048) juga bersetuju bahawa cahaya berkelajuan terbatas, dan beliau merupakan orang pertama menemui bahawa kelajuan cahaya adalah lebih pantas daripada [[kelajuan bunyi]].<ref name=Biruni/> [[Qutb al-Din al-Shirazi]] (1236-1311) dan [[Kamāl al-Dīn al-Fārisī]] (1260-1320) memberikan penjelasan betul yang pertama tentang fenomena [[pelangi]].<ref>{{MacTutor|id=Al-Farisi|title=Al-Farisi}}</ref> Dalam [[ilmu mekanik]], [[Ja'far Muhammad ibn Mūsā ibn Shākir]] (800-873) dari [[Banū Mūsā]] membuat hipotesis bahawa [[jasad samawi]] dan [[sfera cakerawala]] addalh terikat pada [[hukum fizik]] yang sama dengan [[bumi]],<ref name=Saliba/> dan dalam ''Pergerakan Bintang'' dan ''Daya Tarikan'', beliau juga membuat hipotesis bahawa terdapat [[daya]] [[graviti|tarikan]] antara [[jasad samawi]].<ref>K. A. Waheed (1978). ''Islam and The Origins of Modern Science'', p. 27. Islamic Publication Ltd., Lahore.</ref> [[Al-Biruni]], dan kemudiannya [[al-Khazini]], mengembangkan [[kaedah saintifik]] bersifat [[ujikaji]] bagi ilmu mekanik, khususnya bidang-bidang [[statik]] dan [[dinamik]], terutamanya untuk menentukan [[berat bandingan]], seperti yang berasaskan teori [[keseimbangan]] dan [[penimbangan]]. Ahli fizik Muslim menyatukan statik dan dinamik menjadi sains mekanik, dan mereka menggabungkan bidang-bidang [[hidrostatik]] dengan dinamik untuk melahirkan [[hidrodinamik]]. Mereka menggunapakai teori-teori teknik [[nisbah]] dan sangat kecil matematik, dan memperkenalkan teknik [[algebra]] dan [[pengiraan]] yang sangat baik kepada bidang statik. Mereka juga membuat teori [[pusat graviti]] dan menggunapakainya kepada jasad [[tiga dimensi]]. Mereka juga mengasaskan teori [[tuil]] [[wiktionary:ponderable|ponderable]] dan mencipta "sains [[graviti]]" yang kemudiannya dikembangkan dengan lebih lanjut di Eropah pada Zaman Pertengahan.<ref>Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", p. 642, in {{Harv|Morelon|Rashed|1996|pp=614-642}}: {{quote|"Using a whole body of mathematical methods (not only those inherited from the antique theory of ratios and infinitesimal techniques, but also the methods of the contemporary algebra and fine calculation techniques), Arabic scientists raised statics to a new, higher level. The classical results of Archimedes in the theory of the centre of gravity were generalized and applied to three-dimensional bodies, the theory of ponderable lever was founded and the 'science of gravity' was created and later further developed in medieval Europe. The phenomena of statics were studied by using the dynamic apporach so that two trends - statics and dynamics - turned out to be inter-related withina single science, mechanics. The combination of the dynamic apporach with Archimedean hydrostatics gave birth to a direction in science which may be called medieval hydrodynamics. [...] Numerous fine experimental methods were developed for determining the specific weight, which were based, in particular, on the theory of balances and weighing. The classical works of al-Biruni and al-Khazini can by right be considered as the beginning of the application of experimental methods in [[medieval science]]."}}</ref> Al-Biruni juga membuat teori bahawa [[pecutan]] berkait dengan pergerakan tak seragam.<ref name=Biruni/> Dalam ilmu mekanik, [[Ibn al-Haitham]] membincangkan teori [[kegravitian|tarikan]] antara [[jisim]], dan kelihatannya bahawa beliau sedar akan [[magnitud]] [[pecutan]] adalah disebabkan [[graviti]], dan beliau menyatakan bahawa jasad samawi "adalah tertakluk pada [[hukum fizik]]".<ref>Duhem, Pierre (1908, 1969). ''To Save the Phenomena: An Essay on the Idea of Physical theory from Plato to Galileo'', p. 28. University of Chicago Press, Chicago.</ref> Ibn al-Haitham juga jelas menyatakan bahawa hukum [[inersia]] apabila beliau menyatakan bahawa suatu jasad [[gerakan kekal|sentiasa]] bergerak melainkan satu daya luar menghentikan atau mengubah arah pergerakannya.<ref name=Bizri>Dr. [[Nader El-Bizri]], "Ibn al-Haytham or Alhazen", in Josef W. Meri (2006), ''Medieval Islamic Civilization: An Encyclopaedia'', Vol. II, p. 343-345, [[Routledge]], New York, London.</ref> Beliau juga mengembangkan konsep [[momentum]],<ref>Seyyed [[Hossein Nasr]], "The achievements of Ibn Sina in the field of science and his contributions to its philosophy", ''Islam & Science'', December 2003.</ref> meskipun beliau tidak menyatakan kuantiti konsep ini secara matematik. [[Ibnu Sina]] (980-1037) mengembangkan konsep [[momentum]], dengan merujuk [[daya pendorong]] sebagai berkadaran dengan [[berat]] kali [[halaju]].<ref name=Sayili>A. Sayili (1987), "Ibn Sīnā and Buridan on the Motion of the Projectile", ''Annals of the New York Academy of Sciences'' '''500''' (1), p. 477–482: {{quote|"Thus he considered impetus as proportional to weight times velocity. In other words, his conception of impetus comes very close to the concept of momentum of Newtonian mechanics."}}</ref> Teori beliau mengenai pergerakan juga selari dengan konsep [[inersia]] dalam [[mekanik klasik]].<ref name=Sayili/> Pada tahun 1121, [[al-Khazini]], di dalam ''Buku Timbangan Pintar'', mencadangkan bahawa [[graviti]] dan [[tenaga keupayaan graviti]] sesuatu jasad berbeza bergantung pada jaraknya dari pusat bumi,<ref>Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", p. 621, in {{Harv|Morelon|Rashed|1996|pp=614-642}}</ref> dan dalam [[statik]], beliau dengan jelas membezakan antara [[daya]], [[jisim]] dan [[berat]].<ref>Salah Zaimeche PhD (2005). [http://www.muslimheritage.com/uploads/Merv.pdf Merv], p. 5-7. Foundation for Science Technology and Civilization.</ref> [[Ibn Bajjah]] (m. 1138) berhujah bahawa terdapat daya [[tindak balas]] bagi setiap daya yang digunakan,<ref>[[Shlomo Pines]] (1964), "La dynamique d’Ibn Bajja", in ''Mélanges Alexandre Koyré'', I, 442-468 [462, 468], Paris <br />([[cf.]] Abel B. Franco (October 2003), "Avempace, Projectile Motion, and Impetus Theory", ''Journal of the History of Ideas'' '''64''' (4): 521-546 [543])</ref> meskipun beliau tidak merujuk daya tindak balas itu setara dengan daya yang digunakan.<ref>Abel B. Franco (October 2003), "Avempace, Projectile Motion, and Impetus Theory", ''Journal of the History of Ideas'' '''64''' (4):521-546 [543])</ref> Teori beliau tentang pergerakan memberi pengaruh penting kepada saintis terkemudian seperti [[Galileo Galilei]].<ref>Ernest A. Moody (1951). "Galileo and Avempace: The Dynamics of the Leaning Tower Experiment (I)", ''Journal of the History of Ideas'' '''12''' (2): 163-193 [.</ref> [[Hibat Allah Abu'l-Barakat al-Baghdadi]] (1080-1165) menulis satu kritikan terhadap [[fizik Aristotle]] yang berjudul ''al-Mu'tabar'', yang di dalamnya beliau menyangkal idea [[Aristotle]] bahawa [[daya]] malar menghasilkan gerakan seragam, dengan beliau membuat teori bahawa daya yang digunakan secara berterusan menghasilkan [[pecutan]].<ref>{{cite encyclopedia |last=[[Shlomo Pines]] |title=Abu'l-Barakāt al-Baghdādī , Hibat Allah | encyclopedia = [[Dictionary of Scientific Biography]] |volume=1 |pages=26-28 |publisher=Charles Scribner's Sons |location=New York |date=1970 |isbn=0684101149}} <br />([[cf.]] Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", ''Journal of the History of Ideas'' '''64''' (4), p. 521-546 [528].)</ref> Beliau juga menggambarkan pecutan sebagai kadar perubahan [[halaju]].<ref>A. C. Crombie, ''Augustine to Galileo 2'', p. 67.</ref> [[Ibn Rusyd]] (1126–1198) mentakrifkan dan mengukur [[daya]] sebagai "kadar pada [[kerja]] dilakukan untuk mengubah keadaan [[kinetik]] suatu [[jasad]] material"<ref>Ernest A. Moody (June 1951). "Galileo and Avempace: The Dynamics of the Leaning Tower Experiment (II)", ''Journal of the History of Ideas'' '''12''' (3), p. 375-422 [375].</ref> dan dengan betul berhujah "bahawa kesan dan ukuran daya berubah pada keadaan kinetik suatu [[jism]] [[geseran|rintangan]] secara material."<ref>Ernest A. Moody (June 1951). "Galileo and Avempace: The Dynamics of the Leaning Tower Experiment (II)", ''Journal of the History of Ideas'' '''12''' (3), p. 375-422 [380].</ref> Pada awal kurun ke-16, [[al-Birjandi]] mengembangkan hipotesis yang serupa dengan "inersia membulat."<ref name=Ragep/> Perkembangan dalam mekanik oleh orang Islam meletakkan batu asas bagi perkembangan [[mekanik klasik]] kemudiannya di Eropah awal moden.<ref>Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", p. 642, in {{Harv|Morelon|Rashed|1996|pp=614-642}}: {{quote|"Arabic statics was an essential link in the progress of world science. It played an important part in the prehistory of classical mechanics in medieval Europe. Without it classical mechanics proper could probably not have been created."}}</ref> === Zoology === {{see|Islamic medicine|Early Islamic philosophy}} (contracted; show full) *[http://www.smi.uib.no/paj/Stenberg.html The Islamization of science or the marginalization of Islam] *[http://www.muslimheritage.com/ Muslimheritage] *[http://www.1001inventions.com/index.cfm?fuseaction=main.viewSection&intSectionID=309 1001inventions] *[http://www.science-islam.net/sommaire.php3?lang=en Science and religion in Islam] *Keith L. Moore, {{YouTube|id=Rb0uZefwQnc|title=The Developing Human}} [[Kategori:Sains Islam]] [[Kategori:Zaman Kegemilangan Islam]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://ms.wikipedia.org/w/index.php?diff=prev&oldid=3689798.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|