Difference between revisions 4795127 and 4795128 on mswiki{{Proses/BukanTeamBiasa}} {{Otheruses}} [[Fail:2064 aryabhata-crp.jpg|thumb|300px|Arca Aryabhata di tapak [[Inter-University Centre for Astronomy and Astrophysics|IUCAA]], [[Pune]]. Dengan tiadanya maklumat diketahui mengenai rupawannya, apa-apa imej Aryabhata berasal dari konsepsi artis.]] (contracted; show full) | year = 1990 | edition = 6 | page= 237 }}</ref> === Persamaan tidak tetap === A problem of great interest to [[IndianMasalah yang sangat menarik bagi [[ahli mathematicians]] since ancient times has been to find integer solutions to equations that have the formk India]] sejak zaman dahulu adalah untuk mencari penyelesaian integer untuk persamaan yang mempunyai bentuk ax + b = cy, a topic that has come to be known as [[diophantine equations]]. This is an example from [[Bhaskara]]'s commentary onk yang kemudian dikenali sebagai [[persamaan diophantine]]. Ini adalah contoh dari komen [[Bhaskara]] mengenai Aryabhatiya: : Find the number which gives 5 as the remainder when divided by 8, 4 as the remainder when divided byCari nombor yang memberikan 5 selebihnya apabila dibahagi dengan 8, 4 selebihnya apabila dibahagi dengan 9, dand 1 as the remainder when divided by 7 That is, find N = 8x+5 = 9y+4 = 7z+1. It turns out that the smallest value for N is 85. In general, diophantine equations, such as this, can be notoriously difficult. They were discussed extensively in ancient Vedic text [[Sulba Sutras]], whose more ancient parts might date to 800 BCE. Aryabhata's method of solving such problems is called theselebihnya apabila dibahagi dengan 7 Maksudnya, cari N = 8x+5 = 9y+4 = 7z+1 Ternyata nilai terkecil untuk N adalah 85. Secara umum, persamaan diophantine, seperti ini, sangat sukar. Mereka dibahas secara luas dalam teks Veda kuno [[Sulba Sutras]], yang bahagiannya lebih kuno mungkin berasal dari 800 SM. Kaedah Aryabhata untuk menyelesaikan masalah tersebut disebut kaedah ''{{IAST|kuṭṭaka}}'' (कुट्टक) method. ''Kuttaka'' means "pulverizing" or "breaking into small piecesbermaksud "menghancurkan" atau "memecahkan kepingan kecil", dand the method involves a recursive algorithm for writing the original factors in smaller numbers. Today this algorithm, elaborated by Bhaskara in 621 CE, is the standard method for solving first-order diophantine equations and is often referred to as the [[Aryabhata algorithm]].<ref> Amartya K Dutta, [http://www.ias.ac.in/resonance/Oct2002/pdf/Oct2002p6-22.pdf "Diophantine equations: The Kuttaka"], ''Resonance'', October 2002. Also see earlier overview: [http://www.ias.ac.in/resonance/April2002/pdf/April2002p4-19.pdf ''Mathematics in Ancient India''].</ref> The diophantine equations are of interest in [[cryptology]], and the [[RSA Conference]], 2006, focused on the ''kuttaka'' method and earlier work in the kaedah ini melibatkan algoritma rekursif untuk menulis faktor asal dalam jumlah yang lebih kecil. Kini algoritma ini, yang dihuraikan oleh Bhaskara pada tahun 621 M, adalah kaedah piawai untuk menyelesaikan persamaan diophantine peringkat pertama dan sering disebut sebagai [[algoritma Aryabhata]].<ref> Amartya K Dutta, [http://www.ias.ac.in/resonance/Oct2002/pdf/Oct2002p6-22.pdf "Diophantine equations: The Kuttaka"], ''Resonance'', October 2002. Also see earlier overview: [http://www.ias.ac.in/resonance/April2002/pdf/April2002p4-19.pdf ''Mathematics in Ancient India''].</ref> Persamaan diophantine menarik minat [[cryptology]], dan [[RSA Conference]], 2006, tertumpu pada kaedah ''kuttaka'' dan karya sebelumnya di [[Sulvasutras]]. === Algebra === Dalam ''Aryabhatiya'' Aryabhata memberikan hasil yang elegan untuk penjumlahan [[urutan (matematik)|urutan]] kotak dan kubus:<ref>{{cite book|first=Carl B.| last=Boyer |authorlink=Carl Benjamin Boyer |title=A History of Mathematics |edition=Second |publisher=John Wiley & Sons, Inc. |year=1991 |isbn=0471543977 |page = 207 |chapter = The Mathematics of the Hindus |quote= "Dia memberikan peraturan yang lebih elegan untuk jumlah petak dan kub(contracted; show full) [[Kategori:Kelahiran 476]] [[Kategori:Kematian 550]] [[Kategori:Ahli matematik abad ke-5]] [[Kategori:Ahli matematik abad ke-6]] [[Kategori:Ahli astronomi India]] [[Kategori:Ahli matematik India silam]] [[Kategori:Ahli astronomi zaman pertengahan]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://ms.wikipedia.org/w/index.php?diff=prev&oldid=4795128.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|