Difference between revisions 4795144 and 4795147 on mswiki{{Proses/BukanTeamBiasa}} {{Otheruses}} [[Fail:2064 aryabhata-crp.jpg|thumb|300px|Arca Aryabhata di tapak [[Inter-University Centre for Astronomy and Astrophysics|IUCAA]], [[Pune]]. Dengan tiadanya maklumat diketahui mengenai rupawannya, apa-apa imej Aryabhata berasal dari konsepsi artis.]] (contracted; show full) | Title = History of Hindu Mathematics | Publisher = Asia Publishing House, Bombay | isbn = 81-86050-86-8 (reprint) }}</ref> === Pi sebagai tidak rasional === Aryabhata worked on the approximation formengerjakan pendekatan untuk [[Pi]] (<math>\pi</math>), dand may have come to the conclusion thatungkin sampai pada kesimpulan bahawa <math>\pi</math> is irtidak ratsional. In the second part of theDi bahagian kedua ''Aryabhatiyam'' ({{IAST|gaṇitapāda}} 10), he writedia menulis: <blockquote> ''{{IAST|chaturadhikam śatamaśṭaguṇam dvāśaśṭistathā sahasrāṇām}} <br /> ''{{IAST|Ayutadvayaviśkambhasyāsanno vrîttapariṇahaḥ.''}}<br /> "Add four to 100, multiply by eight, and then add 62,000. By this rule the circumference of a circle with aTambahkan empat hingga 100, kalikan dengan lapan, dan kemudian tambah 62,000. Dengan peraturan ini, lilitan bulatan dengan diameter of 20,000 can be approacheddapat didekati." </blockquote> This implies that the ratio of the circumference to thIni menunjukkan bahawa nisbah lilitan ke diameter isadalah (([4+100)]×8+62000)/20000 = 3.1416, which is accurate to five [[significant figures]]. It is speculated that Aryabhata used the word ''āsanna'' (approaching), to mean that not only is this an approximation but that the value is incommensurable (or [[iryang tepat untuk lima [[angka penting]]. Diperkirakan bahwa Aryabhata menggunakan kata ''āsanna'' (mendekati), untuk bermaksud bahwa ini bukan hanya pendekatan tetapi juga nilainya tidak dapat dibandingkan (atau [[tidak ratsional]]). If this is correct, it is quite a sophisticated insight, because the irSekiranya ini betul, ini adalah wawasan yang cukup canggih, kerana ratsionality of pi was proved inas pi dibuktikan di Europe only iah hanya pada tahun 1761 byoleh [[Johann Heinrich Lambert|Lambert]]).<ref> {{cite book | author = S. Balachandra Rao | title = Indian Mathematics and Astronomy: Some Landmarks | publisher = Jnana Deep Publications | year = 1994/1998 | address = Bangalore | isbn = 81-7371-205-0 }}</ref> AfterSelepas Aryabhatiya was translated into [[Arabic language|diterjemahkan ke dalam [[bahasa Arabic]] (ca. 820 CE) this approximation was mentioned in [[Al-Khwarizmi]]'s book on algebrasekitar 820 M) pendekatan ini disebut dalam buku [[Al-Khwarizmi]] mengenai aljabar.<ref name = Ansari/> === Mensurasi dan trigonometri === Dalam Ganitapada 6, Aryabhata memberikan luas segitiga sebagai : ''tribhujasya phalashariram samadalakoti bhujardhasamvargah'' yang diterjemahkan menjadi: "untuk segitiga, hasil tegak lurus dengan sisi separuh adalah luasnya."<ref>{{Cite book | author = Roger Cooke (contracted; show full) [[Kategori:Kelahiran 476]] [[Kategori:Kematian 550]] [[Kategori:Ahli matematik abad ke-5]] [[Kategori:Ahli matematik abad ke-6]] [[Kategori:Ahli astronomi India]] [[Kategori:Ahli matematik India silam]] [[Kategori:Ahli astronomi zaman pertengahan]] All content in the above text box is licensed under the Creative Commons Attribution-ShareAlike license Version 4 and was originally sourced from https://ms.wikipedia.org/w/index.php?diff=prev&oldid=4795147.
![]() ![]() This site is not affiliated with or endorsed in any way by the Wikimedia Foundation or any of its affiliates. In fact, we fucking despise them.
|